
Software development process - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Software_development_process

1 of 6 8/3/2007 10:26 AM

Software development process
Activities and steps

Requirements | Architecture |
Implementation | Testing | Deployment

Models
Agile | Cleanroom | Iterative | RAD | RUP

| Spiral | Waterfall | XP
Supporting disciplines

Configuration management |
Documentation | Project management |

User experience design

Software development process
From Wikipedia, the free encyclopedia

A software development process
is a structure imposed on the development of a software product. Synonyms include software lifecycle and software
process. There are several models for such processes, each describing approaches to a variety of tasks or activities
that take place during the process.

Contents

1 Processes and meta-processes
2 Process models

2.1 Waterfall processes
2.2 Iterative processes
2.3 Formal methods

3 See also
4 References
5 External links

Processes and meta-processes

A growing body of software development organizations implement process methodologies. Many of them are in the
defense industry, which in the U.S. requires a rating based on 'process models' to obtain contracts. The international
standard for describing the method of selecting, implementing and monitoring the life cycle for software is ISO 12207.

The Capability Maturity Model
(CMM) is one of the leading models. Independent assessments grade organizations on how well they follow their
defined processes, not on the quality of those processes or the software produced. CMM is gradually replaced by
CMMI. ISO 9000 describes standards for formally organizing processes with documentation.

ISO 15504, also known as Software Process Improvement Capability Determination (SPICE), is a "framework for the
assessment of software processes". This standard is aimed at setting out a clear model for process comparison. SPICE
is used much like CMM and CMMI. It models processes to manage, control, guide and monitor software development.
This model is then used to measure what a development organization or project team actually does during software
development. This information is analyzed to identify weaknesses and drive improvement. It also identifies strengths
that can be continued or integrated into common practice for that organization or team.

Six Sigma is a methodology to manage process variations that uses data and statistical analysis to measure and
improve a company's operational performance. It works by identifying and eliminating defects in manufacturing and
service-related processes. The maximum permissible defects is 3.4 per one million opportunities. However, Six Sigma
is manufacturing-oriented and needs further research on its relevance to software development.

Domain Analysis
Often the first step in attempting to design a new piece of software, whether it be an addition to an existing
software, a new application, a new subsystem or a whole new system, is, what is generally referred to as

Software development process - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Software_development_process

2 of 6 8/3/2007 10:26 AM

"Domain Analysis". Assuming that the developers (including the analysts) are not sufficiently knowledgeable in
the subject area of the new software, the first task is to investigate the so-called "domain" of the software. The
more knowledgeable they are about the domain already, the less the work required. Another objective of this
work is to make the analysts who will later try to elicit and gather the requirements from the area experts or
professionals, speak with them in the domain's own terminology and to better understand what is being said by
these people. Otherwise they will not be taken seriously. So, this phase is an important prelude to extracting and
gathering the requirements. The following quote captures the kind of situation an analyst who hasn't done his
homework well may face in speaking with a professional from the domain: "I know you believe you understood
what you think I said, but I am not sure you realize what you heard is not what I meant."[1]

Software Elements Analysis
The most important task in creating a software product is extracting the requirements. Customers typically know
what they want, but not what software should do, while incomplete, ambiguous or contradictory requirements
are recognized by skilled and experienced software engineers. Frequently demonstrating live code may help
reduce the risk that the requirements are incorrect.

Specification
Specification is the task of precisely describing the software to be written, possibly in a rigorous way. In
practice, most successful specifications are written to understand and fine-tune applications that were already
well-developed, although safety-critical software systems are often carefully specified prior to application
development. Specifications are most important for external interfaces that must remain stable.

Software architecture
The architecture of a software system refers to an abstract representation of that system. Architecture is
concerned with making sure the software system will meet the requirements of the product, as well as ensuring
that future requirements can be addressed. The architecture step also addresses interfaces between the software
system and other software products, as well as the underlying hardware or the host operating system.

Implementation (or coding)
Reducing a design to code may be the most obvious part of the software engineering job, but it is not
necessarily the largest portion.

Testing
Testing of parts of software, especially where code by two different engineers must work together, falls to the
software engineer.

Documentation
An important (and often overlooked) task is documenting the internal design of software for the purpose of
future maintenance and enhancement. Documentation is most important for external interfaces.

Software Training and Support
A large percentage of software projects fail because the developers fail to realize that it doesn't matter how
much time and planning a development team puts into creating software if nobody in an organization ends up
using it. People are occasionally resistant to change and avoid venturing into an unfamiliar area so, as a part of
the deployment phase, it is very important to have training classes for the most enthusiastic software users
(build excitement and confidence), shifting the training towards the neutral users intermixed with the avid
supporters, and finally incorporate the rest of the organization into adopting the new software. Users will have
lots of questions and software problems which leads to the next phase of software.

Maintenance
Maintaining and enhancing software to cope with newly discovered problems or new requirements can take far
more time than the initial development of the software. Not only may it be necessary to add code that does not
fit the original design but just determining how software works at some point after it is completed may require
significant effort by a software engineer. About ⅔ of all software engineering work is maintenance, but this
statistic can be misleading. A small part of that is fixing bugs. Most maintenance is extending systems to do new

Software development process - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Software_development_process

3 of 6 8/3/2007 10:26 AM

things, which in many ways can be considered new work. In comparison, about ⅔ of all civil engineering,
architecture, and construction work is maintenance in a similar way.

Process models

A decades-long goal has been to find repeatable, predictable processes or methodologies that improve productivity
and quality. Some try to systematize or formalize the seemingly unruly task of writing software. Others apply project
management techniques to writing software. Without project management, software projects can easily be delivered
late or over budget. With large numbers of software projects not meeting their expectations in terms of functionality,
cost, or delivery schedule, effective project management is proving difficult.

Waterfall processes

The best-known and oldest process is the waterfall model, where developers (roughly) follow these steps in order:

state requirements
analyze requirements
design a solution approach
architect a software framework for that solution
develop code
test (perhaps unit tests then system tests)
deploy, and
Post Implementation.

After each step is finished, the process proceeds to the next step, just as builders don't revise the foundation of a house
after the framing has been erected.

There is a misconception that the process has no provision for correcting errors in early steps (for example, in the
requirements). In fact this is where the domain of requirements management comes in which includes change control.

This approach is used in high risk projects, particularly large defense contracts. The problems in waterfall do not arise
from "immature engineering practices, particularly in requirements analysis and requirements management." Studies
of the failure rate of the DOD-STD-2167
specification, which enforced waterfall, have shown that the more closely a project follows its process, specifically in
up-front requirements gathering, the more likely the project is to release features that are not used in their current
form.

More often too the supposed stages are part of joint review between customer and supplier, the supplier can, in fact,
develop at risk and evolve the design but must sell off the design at a key milestone called Critical Design Review
(CDR). This shifts engineering burdens from engineers to customers who may have other skills.

Iterative processes

Iterative development [1] (http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204375) prescribes the construction
of initially small but ever larger portions of a software project to help all those involved to uncover important issues
early before problems or faulty assumptions can lead to disaster. Iterative processes are preferred by commercial
developers because it allows a potential of reaching the design goals of a customer who does not know how to define
what they want.

Agile software development
processes are built on the foundation of iterative development. To that foundation they add a lighter, more
people-centric viewpoint than traditional approaches. Agile processes use feedback, rather than planning, as their
primary control mechanism. The feedback is driven by regular tests and releases of the evolving software.

Software development process - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Software_development_process

4 of 6 8/3/2007 10:26 AM

Agile processes seem to be more efficient than older methodologies, using less programmer time to produce more
functional, higher quality software, but have the drawback from a business perspective that they do not provide
long-term planning capability. In essence, the Agile approach claims it will provide the most bang for the buck, but
won't say exactly when that bang will be or how big a buck will ultimately be required.

Extreme Programming, XP, is the best-known iterative process. In XP, the phases are carried out in extremely small
(or "continuous") steps compared to the older, "batch" processes. The (intentionally incomplete) first pass through the
steps might take a day or a week, rather than the months or years of each complete step in the Waterfall model. First,
one writes automated tests, to provide concrete goals for development. Next is coding (by a pair of programmers),
which is complete when all the tests pass, and the programmers can't think of any more tests that are needed. Design
and architecture emerge out of refactoring, and come after coding. Design is done by the same people who do the
coding. (Only the last feature - merging design and code - is common to all the other agile processes.) The incomplete
but functional system is deployed or demonstrated for (some subset of) the users (at least one of which is on the
development team). At this point, the practitioners start again on writing tests for the next most important part of the
system.

While Iterative development approaches have their advantages, software architects are still faced with the challenge of
creating a reliable foundation upon which to develop. Such a foundation often requires a fair amount of upfront
analysis and prototyping to build a development model. The development model often relies upon specific design
patterns and entity relationship diagrams
(ERD). Without this upfront foundation, Iterative development can create long term challenges that are significant in
terms of cost and quality.

Critics of iterative development approaches point out that these processes place what may be an unreasonable
expectation upon the recipient of the software: that they must possess the skills and experience of a seasoned software
developer. The approach can also be very expensive if iterations are not small enough to mitigate risk; akin to... "If
you don't know what kind of house you want, let me build you one and see if you like it. If you don't, we'll tear it all
down and start over." By analogy the critic argues that up-front design is as necessary for software development as it
is for architecture. The problem with this criticism is that the whole point of iterative programming is that you don't
have to build the whole house before you get feedback from the recipient. Indeed, in a sense conventional
programming places more of this burden on the recipient, as the requirements and planning phases take place entirely
before the development begins, and testing only occurs after development is officially over.

In fact, a relatively quiet turn around in the Agile community has occurred on the notion of "evolving" the software
without the requirements locked down. In the old world this was called requirements creep and never made
commercial sense. The Agile community has similarly been "burnt" because, in the end, when the customer asks for
something that breaks the architecture, and won't pay for the re-work, the project terminates in an Agile manner.

These approaches have been developed along with web based technologies. As such, they are actually more akin to
maintenance life cycles given that most of the architecture and capability of the solutions is embodied within the
technology selected as the back bone of the application.

Refactoring is claimed, by the Agile community, as their alternative to cogitating and documenting a design. No
equivalent claim is made of re-engineering - which is an artifact of the wrong technology being chosen, therefore the
wrong architecture. Both are relatively costly. Claims that 10%-15% must be added to an iteration to account for
refactoring of old code exist. However, there is no detail as to whether this value accounts for the re-testing or
regression testing that must happen where old code is touched. Of course, throwing away the architecture is more
costly again. In fact, a survey of the "designless" approach paints a picture of the cost incurred where this class of
approach is used (Software Development at Microsoft Observed
(ftp://ftp.research.microsoft.com/pub/tr/TR-2005-140.pdf)). Note the heavy emphasis here on constant reverse
engineering by programming staff rather than managing a central design.

Test Driven Development
(TDD) is a useful output of the Agile camp but raises a conundrum. TDD requires that a unit test be written for a class

Software development process - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Software_development_process

5 of 6 8/3/2007 10:26 AM

before the class is written. Therefore, the class firstly has to be "discovered" and secondly defined in sufficient detail
to allow the write-test-once-and-code-until-class-passes model that TDD actually uses. This is actually counter to
Agile approaches, particularly (so-called) Agile Modeling, where developers are still encouraged to code early, with
light design. Obviously to get the claimed benefits of TDD a full design down to class and responsibilities (captured
using, for example, Design By Contract) is necessary. This counts towards iterative development, with a design locked
down, but not iterative design - as heavy refactoring and re-engineering negate the usefulness of TDD.

Formal methods

Formal methods
are mathematical approaches to solving software (and hardware) problems at the requirements, specification and
design levels. Examples of formal methods include the B-Method, Petri nets, RAISE and VDM. Various formal
specification notations are available, such as the Z notation. More generally, automata theory can be used to build up
and validate application behavior by designing a system of finite state machines.

Finite state machine (FSM) based methodologies allow executable software specification and by-passing of
conventional coding (see virtual finite state machine or event driven finite state machine).

Formal methods are most likely to be applied in avionics software, particularly where the software is safety critical.
Software safety assurance standards, such as DO 178B demand formal methods at the highest level of categorization
(Level A).

Formalization of software development is creeping in, in other places, with the application of OCL (and
specializations such as JML) and especially with MDA allowing execution of designs, if not specifications.

Another emerging trend in software development is to write a specification in some form of logic (usually a variation
of FOL), and then to directly execute the logic as though it were a program. The OWL language, based on Description
Logic, is an example. There is also work on mapping some version of English (or another natural language)
automatically to and from logic, and executing the logic directly. Examples are Attempto Controlled English, and
Internet Business Logic, which does not seek to control the vocabulary or syntax. A feature of systems that support
bidirectional English-logic mapping and direct execution of the logic is that they can be made to explain their results,
in English, at the business or scientific level.

See also

Some software development methods:

Waterfall model
Spiral model
Model driven development
User experience
Top-down and bottom-up design
Chaos model
Evolutionary prototyping
Prototyping
ICONIX Process (UML-based object modeling with use cases)
Unified Process
V-model
Extreme Programming
Software Development Rhythms
Hysterical raisins, or hard-to-explain features maintained for backward compatibility

Related subjects:

Software development process - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Software_development_process

6 of 6 8/3/2007 10:26 AM

Rapid application development
Software development
Software Estimation
Abstract Model
Development stage
IPO+S Model
List of software engineering topics
Performance engineering
Process
Programming paradigm
Programming productivity
Project
Systems Development Life Cycle (SDLC)
Software documentation
Systems design
List of software development philosophies
Test effort
Best Coding Practices

References
^ Appears in Roger S. Pressman, Software Engineering (A practitioner's approach), 5th edition, 2000, Mc Graw-Hill
Education, ISBN 978-0071181822; however the quote is attributed to many sources, including Richard Nixon, Robert
McCloskey, and Alan Greenspan. It may have originated several decades earlier in an anonymous academic joke.

1.

External links

Frederick P. Brooks, Jr., "No Silver Bullet: Essence and Accidents of Software Engineering", 1986
Gerhard Fischer,
"The Software Technology of the 21st Century: From Software Reuse to Collaborative Software Design"
(http://l3d.cs.colorado.edu/~gerhard/papers/isfst2001.pdf) , 2001
Lydia Ash: The Web Testing Companion: The Insider's Guide to Efficient and Effective Tests , Wiley, May 2,
2003. ISBN 0471430218
Software development life cycle (SDLC) [visual image], software development life cycle
(http://www.notetech.com/images/software_lifecycle.jpg)
Iterative Development and The Leaning Tower of Pisa
(http://www.fromthetrench.com/2007/01/21/iterative-development-and-the-leaning-tower-of-pisa/) - From The
Trench (http://www.fromthetrench.com/)

Retrieved from "http://en.wikipedia.org/wiki/Software_development_process"

Categories: Articles lacking sources from June 2006 | All articles lacking sources | Software development process |
Articles with unsourced statements since June 2007 | All articles with unsourced statements | Articles with unsourced
statements since February 2007 | Software engineering | Formal methods

This page was last modified 23:58, 27 July 2007.
All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501(c)(3)
tax-deductible nonprofit charity.

