
Software Development Process

• A structure imposed on the development of
a software product.

• Defines Who, What, When and How of
Developing Software. Developing Software.

• There are several models for such
processes, each describing approaches to
a variety of tasks or activities that take
place during the process.

http://en.wikipedia.org/wiki/IBM_Rational_Unified _Process

Software Development Process

• Domain Analysis

2

– The first step in attempting to design a new piece of
software, whether it be an addition to an existing
software, a new application, a new subsystem or a
whole new system, is, what is generally referred to as
"Domain Analysis".

– Assuming that the developers (including the analysts)
are not sufficiently knowledgeable in the subject area of
the new software, the first task is to investigate the so-
called "domain" of the software.

Software Development Process

• Domain Analysis

3

– make the analysts who will later try to elicit and

gather the requirements from the area experts

or professionals, speak with them in the

domain's own terminology and to better

understand what is being said by these people.

– An important step to extracting and gathering

the requirements.

Software Development Process

• Software Elements Analysis
� The most important task in creating a software product

4

� The most important task in creating a software product

is extracting the requirements.

� Customers typically know what they want, but not what

software should do, while incomplete, ambiguous or

contradictory requirements are recognized by skilled

and experienced software engineers.

� Frequently demonstrating live code may help reduce

the risk that the requirements are incorrect.

Software Development Process

• Specification

– The task of precisely

describing the software to be

written, possibly in a rigorous

5

written, possibly in a rigorous

way.

Software Development Process

• Software Architecture

– An abstract representation of that

6

– An abstract representation of that

system

– Addresses interfaces between the

software system and other software

products, as well as the underlying

hardware or the host operating

system

Software Development Process

• Implementation (or coding)

– A realization of a technical specification or

algorithm as a program, software component, or

other computer system.

• Testing

7

• Testing

– Testing of parts of software, especially

where code by two different engineers must

work together, falls to the software

engineer.

Software Development Process

• Documentation

– An important (and often

8

– An important (and often
overlooked) task is documenting
the internal design of software
for the purpose of future
maintenance and enhancement.

– Documentation is most important
for external interfaces.

Software Development Process

• Software Training and Support

9

�People are occasionally resistant

to change and avoid venturing into

an unfamiliar area so it is very

important to have training classes

for the most enthusiastic software

users (build excitement and

confidence)

Software Development Process

• Maintenance

10

• Maintenance

– Maintaining and enhancing

software to cope with newly

discovered problems or new

requirements can take far more

time than the initial development of

the software.

The software process
• A structured set of activities required to develop a

software system.

• Many different software processes but all involve:

– Specification – defining what the system should do;

– Design and implementation – defining the organization of

the system and implementing the system;

– Validation – checking that it does what the customer – Validation – checking that it does what the customer

wants;

– Evolution – changing the system in response to changing

customer needs.

• A software process model is an abstract

representation of a process. It presents a description

of a process from some particular perspective.
11

Software process

descriptions

• When we describe and discuss processes, we

usually talk about the activities in these processes

such as specifying a data model, designing a user

interface, etc. and the ordering of these activities.

• Process descriptions may also include:• Process descriptions may also include:

– Products, which are the outcomes of a process activity;

– Roles, which reflect the responsibilities of the people

involved in the process;

– Pre- and post-conditions, which are statements that are

true before and after a process activity has been enacted

or a product produced.

12

Plan-driven and agile processes
• Plan-driven processes are processes where all of

the process activities are planned in advance and

progress is measured against this plan.

• In agile processes, planning is incremental and it

is easier to change the process to reflect

changing customer requirements. changing customer requirements.

• In practice, most practical processes include

elements of both plan-driven and agile

approaches.

• There are no right or wrong software processes.

13

Software process models
• The waterfall model

– Plan-driven model. Separate and distinct phases of

specification and development.

• Incremental development

– Specification, development and validation are

interleaved. May be plan-driven or agile.interleaved. May be plan-driven or agile.

• Reuse-oriented software engineering

– The system is assembled from existing components. May

be plan-driven or agile.

• In practice, most large systems are developed

using a process that incorporates elements from all

of these models.

14

• Best known and oldest process

• a sequential software development model in
which development is seen as flowing steadily
downwards (like a waterfall) through the phases
of
– requirements analysis,

Waterfall Process

15

– requirements analysis,

– design,

– implementation,

– testing (validation),

– integration, and

– maintenance.

The waterfall model
Because of the cascade from one phase

to a another, this model is known as the

waterfall model

16

Waterfall model phases

• There are separate identified phases in the

waterfall model:

– Requirements analysis and definition

– System and software design

– Implementation and unit testing

– Integration and system testing– Integration and system testing

– Operation and maintenance

• The main drawback of the waterfall model is the

difficulty of accommodating change after the

process is underway. In principle, a phase has to

be complete before moving onto the next phase.

17

Waterfall model

problems
• Inflexible partitioning of the project into distinct

stages makes it difficult to respond to changing

customer requirements.

– Therefore, this model is only appropriate when the

requirements are well-understood and changes will be requirements are well-understood and changes will be

fairly limited during the design process.

– Few business systems have stable requirements.

• The waterfall model is mostly used for large

systems engineering projects where a system is

developed at several sites.

– In those circumstances, the plan-driven nature of the

waterfall model helps coordinate the work. 18

Spiral development
• Process is represented as a spiral rather

than as a sequence of activities with
backtracking.

• Each loop in the spiral represents a
phase in the process. phase in the process.

• No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required.

• Risks are explicitly assessed and
resolved throughout the process.

Spiral model of the software process-

(a risk driven software process framework)

Spiral model sectors

• Objective setting

– Specific objectives for the phase are identified.

• Risk assessment and reduction

– Risks are assessed and activities put in place to
reduce the key risks.

• Development and validation

– A development model for the system is chosen
which can be any of the generic models.

• Planning

– The project is reviewed and the next phase of the
spiral is planned.

Incremental

development

22

Incremental development benefits

• The cost of accommodating changing customer

requirements is reduced.

– The amount of analysis and documentation that has to

be redone is much less than is required with the waterfall

model.

• It is easier to get customer feedback on the

development work that has been done. development work that has been done.

– Customers can comment on demonstrations of the

software and see how much has been implemented.

• More rapid delivery and deployment of useful

software to the customer is possible.

– Customers are able to use and gain value from the

software earlier than is possible with a waterfall process.
23

Incremental development problems

• The process is not visible.

– Managers need regular deliverables to measure

progress. If systems are developed quickly, it is not

cost-effective to produce documents that reflect every

version of the system.

• System structure tends to degrade as new • System structure tends to degrade as new

increments are added.

– Unless time and money is spent on refactoring to

improve the software, regular change tends to corrupt

its structure. Incorporating further software changes

becomes increasingly difficult and costly.

24

Reuse-oriented software engineering

• Based on systematic reuse where systems are

integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

• Process stages

– Component analysis;

– Requirements modification;

– System design with reuse;

– Development and integration.

• Reuse is now the standard approach for building

many types of business system

– Reuse covered in more depth in Chapter 16.

25

Reuse-oriented

software

engineering

26

Rapid software development

• Rapid development and delivery is now often the

most important requirement for software systems

– Businesses operate in a fast –changing requirement and

it is practically impossible to produce a set of stable

software requirements

– Software has to evolve quickly to reflect changing – Software has to evolve quickly to reflect changing

business needs.

• Rapid software development

– Specification, design and implementation are inter-leaved

– System is developed as a series of versions with

stakeholders involved in version evaluation

– User interfaces are often developed using an IDE and

graphical toolset.
27

Agile methods

• Dissatisfaction with the overheads involved in

software design methods of the 1980s and 1990s

led to the creation of agile methods. These methods:

– Focus on the code rather than the design

– Are based on an iterative approach to software
development

– Are intended to deliver working software quickly and evolve – Are intended to deliver working software quickly and evolve
this quickly to meet changing requirements.

• The aim of agile methods is to reduce overheads in

the software process (e.g. by limiting

documentation) and to be able to respond quickly to

changing requirements without excessive rework.

28

Agile manifesto

• We are uncovering better ways of developing

 software by doing it and helping others do it.

 Through this work we have come to value:

– Individuals and interactions over processes and

tools

Working software over comprehensive Working software over comprehensive

documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

• That is, while there is value in the items on

 the right, we value the items on the left more.

29

The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new

system requirements and to evaluate the iterations of the

system.

Incremental delivery The software is developed in increments with the customer

specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and

exploited. Team members should be left to develop their own

ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the

system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and

in the development process. Wherever possible, actively work

to eliminate complexity from the system.

30

Agile method applicability
• Product development where a software company

is developing a small or medium-sized product for

sale.

• Custom system development within an

organization, where there is a clear commitment

from the customer to become involved in the from the customer to become involved in the

development process and where there are not a

lot of external rules and regulations that affect the

software.

• Because of their focus on small, tightly-integrated

teams, there are problems in scaling agile

methods to large systems.
31

Problems with agile

methods

• It can be difficult to keep the interest of

customers who are involved in the process.

• Team members may be unsuited to the intense • Team members may be unsuited to the intense

involvement that characterises agile methods.

• Prioritising changes can be difficult where there

are multiple stakeholders.

• Maintaining simplicity requires extra work.

• Contracts may be a problem as with other

approaches to iterative development.

32

Agile methods and software
maintenance

• Most organizations spend more on maintaining

existing software than they do on new software

development. So, if agile methods are to be

successful, they have to support maintenance as

well as original development.

• Two key issues:

– Are systems that are developed using an agile approach

maintainable, given the emphasis in the development

process of minimizing formal documentation?

– Can agile methods be used effectively for evolving a

system in response to customer change requests?

• Problems may arise if original development team

cannot be maintained.
33

The Rational Unified Process

• A modern generic process derived from the work

on the UML and associated process.

• Brings together aspects of the generic process

models discussed previously.

• Normally described from 3 perspectives• Normally described from 3 perspectives

– A dynamic perspective that shows phases over time;

– A static perspective that shows process activities;

– A practive perspective that suggests good practice.

34

Phases in the

Rational Unified

Process

35

RUP phases
• Inception

– Establish the business case for the system.

• Elaboration

– Develop an understanding of the problem

domain and the system architecture.domain and the system architecture.

• Construction

– System design, programming and testing.

• Transition

– Deploy the system in its operating

environment.
36

RUP iteration

• In-phase iteration

– Each phase is iterative with results

developed incrementally.developed incrementally.

• Cross-phase iteration

– As shown by the loop in the RUP

model, the whole set of phases may

be enacted incrementally.

37

SCS 2003- 38

Static workflows in the
Rational Unified Process

Workflow Description

Business modelling The business processes are modelled using business

use cases.

Requirements Actors who interact with the system are identified and

use cases are developed to model the system

requirements.requirements.

Analysis and design A design model is created and documented using

architectural models, component models, object

models and sequence models.

Implementation The components in the system are implemented and

structured into implementation sub-systems.

Automatic code generation from design models helps

accelerate this process.

39

Static workflows in the Rational

Unified Process

Workflow Description

Testing Testing is an iterative process that is carried out in conjunction

with implementation. System testing follows the completion of

the implementation.

Deployment A product release is created, distributed to users and installed inDeployment A product release is created, distributed to users and installed in

their workplace.

Configuration and

change management

This supporting workflow managed changes to the system (see

Chapter 25).

Project management This supporting workflow manages the system development (see

Chapters 22 and 23).

Environment This workflow is concerned with making appropriate software

tools available to the software development team.

40

RUP good practice
• Develop software iteratively

– Plan increments based on customer

priorities and deliver highest priority

increments first.

• Manage requirements

– Explicitly document customer – Explicitly document customer

requirements and keep track of

changes to these requirements.

• Use component-based architectures

– Organize the system architecture as a

set of reusable components.
41

RUP good practice

• Visually model software

– Use graphical UML models to present

static and dynamic views of the software.

• Verify software quality

– Ensure that the software meet’s – Ensure that the software meet’s

organizational quality standards.

• Control changes to software

– Manage software changes using a

change management system and

configuration management tools.

42

Key points
• Processes should include activities to cope with

change. This may involve a prototyping phase that

helps avoid poor decisions on requirements and

design.

• Processes may be structured for iterative

development and delivery so that changes may be development and delivery so that changes may be

made without disrupting the system as a whole.

• The Rational Unified Process is a modern generic

process model that is organized into phases

(inception, elaboration, construction and

transition) but separates activities (requirements,

analysis and design, etc.) from these phases.
43

Rational Unified Process (RUP)

• An iterative software development process
framework created by the Rational
Software Corporation (division of IBM
since 2003)

• not a single concrete prescriptive process,

44

• not a single concrete prescriptive process,
but rather an adaptable process
framework, intended to be tailored by the
development organizations and software
project teams that will select the elements
of the process that are appropriate for their
needs.

SCS 2003- 45

Rational Unified Process (RUP)

� Activities emphasize the creation and maintenance
of models rather than paper documents.

� Development under RUP is architecture centric. The
process focus on the early development and
baseline of a software architecture (component

46

baseline of a software architecture (component
based)

� The RUP places strong emphasis on building
systems based on a thorough understanding of how
the delivered system will be used.

Rational Unified Process (RUP)

• History

– The roots of Rational Process go back

to the original spiral model of Barry

47

to the original spiral model of Barry

Boehm.

– The Rational Approach was developed

at Rational Software in the 1980s and

1990s.

Rational Unified Process (RUP)

• History
– In 1995 Rational Software acquired the

Swedish Company Objectory AB.

– The Rational Unified Process was the result of
the merger of the Rational Approach and the

SCS 2003- 48

the merger of the Rational Approach and the
Objectory process developed by Objectory
founder Ivar Jacobson.

– The first results of that merger was the Rational
Objectory Process, designed to an Objectory-
like process, but suitable to wean Objectory
users to the Rational Rose tool. When that goal
was accomplished, the name was changed.

Rational Unified Process (RUP)

• History
– The first version of the Rational Unified

SCS 2003- 49

– The first version of the Rational Unified
Process, version 5.0, was released in
1998.

– The chief architect was Philippe
Kruchten.

– The version of RUP (7.0) - Jan. 2007

Rational Unified Process (RUP)

• Principles of Business-Driven
Development

– RUP is based on a set of six best practices

for modern software engineering.

SCS 2003- 50

for modern software engineering.

• Develop iteratively

• Manage requirements

• Employ a component-based architecture

• Model software visually

• Continuously verify quality

• Control changes

Key Characteristics

�The Rational Unified Process encourages quality control

and risk management.

Rational Unified Process

(RUP)

SCS 2003- 51

and risk management.

Quality assessment is built into the process, in all

activities and involving all participants, using objective

measurements and criteria.

Risk management is also built into the process, so that

risks to the success of the project are identified and

attacked early in the process, when there is time to
react.

Rational Unified Process

– The RUP lifecycle

organizes the

tasks into phases

SCS 2003- 52

tasks into phases

and iterations

A project has four phases:

•Inception phase

•Elaboration phase

•Construction phase

•Transition phase

The Rational Unified Process consists of the following
four phases

Inception - Establish the business case

Rational Unified
Process

SCS 2003- 53

Inception - Establish the business case
for the project

Elaboration - Establish a project plan and a sound
architecture

Construction - Grow the system

Transition - Supply the system to its end users

Inception Phase

• During this phase, you establish the
business case for the system and define
the project’s scope.

Rational Unified
Process

SCS 2003- 54

the project’s scope.

• The business case includes success
criteria, risks assessment, estimates of the
resources needed and a phase plan
showing a schedule of major millstones.

• During inception, it’s common to create an

Inception Phase

Rational Unified
Process

SCS 2003- 55

• During inception, it’s common to create an

executable prototype that serves as a proof

of concept.

• At the end of the inception phase, you

examine the life cycle objectives of the

project and decide whether to proceed with
full- scale development

• Some inspection tasks include

Inception Phase

Rational Unified
Process

SCS 2003- 56

• Some inspection tasks include

determining use cases, actors and draw

Use Case diagrams.

• The Use Case diagrams can be

presented to users to validate that

diagrams are a comprehensive view of

the system features.

SCS 2003- 57

• During this phase the problem domain analysis
is made and the architecture of the project gets
its basic form.

Elaboration Phase

Rational Unified
Process

SCS 2003- 58

• This phase must pass the Lifecycle
Architecture Milestone by meeting the following
criteria:

�A use-case model in which the use-
cases and the actors have been identified
and most of the use-case descriptions are
developed. The use-case model should be
80% complete.

�A description of the software architecture in
a software system development process.

Elaboration Phase

Rational Unified
Process

SCS 2003- 59

a software system development process.

�An executable architecture that realizes
architecturally significant use cases.

�Business case and risk list which are
revised.

�A development plan for the overall project.

�Prototypes that demonstratively mitigate
each identified technical risk.

• To verify the architecture, you implement a
system that demonstrate the architectural

Elaboration Phase

Rational Unified
Process

SCS 2003- 60

system that demonstrate the architectural
choices and executes significant use cases.

• At the end of the elaboration phase, you
examine the detailed system objectives and
scope, the choice of architecture, and the
resolution of major risks.

• Since elaboration is the detailing of the system
requirement, Use Case model might require

updating.

Elaboration Phase

Rational Unified
Process

SCS 2003- 61

updating.

• As the flow of processing is detailed,
Sequence and Collaboration diagrams help
illustrate the flow.

• They also help design objects that will be
required for the system.

• Class diagrams and the State Transition
diagrams are created during this phase.

During the construction phase,

Construction Phase

Rational Unified
Process

SCS 2003- 62

• all remaining components and application
features are developed and integrated into
the product, and

• all features are tested thoroughly.

• Emphasis is placed on managing resources
and controlling operations to optimise costs,
schedules, and quality.

• Construction is the stage in which majority of the
coding for the project is done.

Construction Phase

Rational Unified
Process

SCS 2003- 63

coding for the project is done.
• Components diagrams are created to show the

compile time dependencies between the
components.

• After code has been created by the developers, the
model can be synchronized with the code through
reverse engineering.

�During the transition phase, you deploy

the software to the user community.

Transition Phase

Rational Unified
Process

SCS 2003- 64

�Once the system has been put into hands

of its end users, issues often arise that

require additional development in order to

adjust the system, correct some undetected

problems or finish some features that have

been postponed.

• This phase typically starts with a beta release
of the system, which is then replaced with the
production system.

Transition Phase

Rational Unified
Process

SCS 2003- 65

production system.

• Parallel operation with the legacy system that
the prototype is replacing.

• Conversion of operational databases

• Training of users and maintainers.

• Rollout the product to the marketing,
distribution, and sales teams.

Within each phase are a number of
iterations.

- An iteration represents a complete
development cycle, from requirements
capture in analysis to implementation and

Disciplines and workflows

Rational Unified
Process

SCS 2003- 66

capture in analysis to implementation and
testing,

-that results in the release of an executable
product constituting a subset of the final
project under development,

-which then is grown incrementally from
iteration to iteration to become the final
system.

Disciplines and workflows
Rational Unified

Process

Engineering Disciplines

SCS 2003- 67Supporting Disciplines

• RUP is based on a set of

Disciplines and workflows

Rational Unified
Process

SCS 2003- 68

• RUP is based on a set of

– building blocks, or

– content elements, describing

• what is to be produced,

• the necessary skills required and

• the step-by-step explanation describing how
specific development goals are achieved.

• The main building blocks, or content elements,

Disciplines and workflows

Rational Unified
Process

SCS 2003- 69

• The main building blocks, or content elements,
– Roles (who) – A Role defines a set of related skills,

competences, and responsibilities.

– Work Products (what) – A Work Product represents
something resulting from a task, including all the
documents and models produced while working through
the process.

– Tasks (how) – A Task describes a unit of work assigned
to a Role that provides a meaningful result.

Within each iteration, the tasks are categorized
into nine Disciplines:

Supporting Disciplines:
• Configuration and

Engineering Disciplines:

• Business modeling

Disciplines and workflows

Rational Unified
Process

SCS 2003- 70

• Configuration and
change management
discipline

• Project management
discipline

• Environment discipline

• Business modeling
discipline

• Requirements discipline
• Analysis and design

discipline
• Implementation discipline
• Test discipline
• Deployment discipline

Disciplines and workflows
Rational Unified

Process

Business Modeling

SCS 2003- 71

• Business modeling discipline

– establish a better understanding and
communication channel between business

Disciplines and workflows

Rational Unified
Process

SCS 2003- 72

communication channel between business
engineering and software engineering.

– explains how to describe a vision of the
organization in which the system will be deployed
and how to then use this vision as a basis to
outline the process, roles and responsibilities.

Disciplines and workflows
Rational Unified

Process

Requirements Discipline

SCS 2003- 73

Disciplines and workflows

Rational Unified
Process

SCS 2003- 74

• Requirements discipline

– The goal of the Requirements is to describe

what the system should do and allows the

developers and the customer to agree on

that description.

Disciplines and workflows
Rational Unified

Process

Analysis and Design Discipline

SCS 2003- 75

• Analysis and design discipline
– The goal of analysis and design is to

show how the system will be realized in
the implementation phase. The aim is

Disciplines and workflows

Rational Unified
Process

SCS 2003- 76

the implementation phase. The aim is
to build a system that:

• Performs—in a specific implementation
environment—the tasks and functions
specified in the use-case descriptions.

• Fulfills all its requirements.

• Is easy to change when functional
requirements change.

Disciplines and workflows
Rational Unified

Process

Implementation Discipline

SCS 2003- 77

• Implementation discipline
– The purposes of implementation are:

• To define the organization of the code, in
terms of implementation subsystems
organized in layers.

Disciplines and workflows

Rational Unified
Process

SCS 2003- 78

organized in layers.

• To implement classes and objects in terms of
components (source files, binaries,
executables, and others).

• To test the developed components as units.

• To integrate the results produced by
individual implementers (or teams), into an
executable system.

Disciplines and workflows
Rational Unified

Process

Test Discipline

SCS 2003- 79

• Test discipline

– The purposes of the Test discipline are:

Disciplines and workflows

Rational Unified
Process

SCS 2003- 80

• To verify the interaction between objects.

• To verify the proper integration of all components of

the software.

• To verify that all requirements have been correctly

implemented.

• To identify and ensure that defects are addressed

prior to the deployment of the software

Disciplines and workflows
Rational Unified

Process

Deployment Discipline

SCS 2003- 81

• Deployment discipline

– The purpose of deployment is to

successfully produce product releases,

and deliver the software to its end users. It

Disciplines and workflows

Rational Unified
Process

SCS 2003- 82

covers a wide range of activities including:

• Producing external releases of the software

• Packaging the software

• Distributing the software

• Installing the software

• Providing help and assistance to users

Supporting Disciplines and

workflows

Rational Unified
Process

SCS 2003- 83

• Configuration and Change management
discipline

– The Change Management discipline in

Supporting Disciplines and workflows

Rational Unified
Process

SCS 2003- 84

– The Change Management discipline in
RUP deals with three specific areas:

• Configuration management: responsible for the
systematic structuring of the products

• Change request management: keeps track of
the proposals for change

• Status and measurement management:

• Project management discipline

– Project planning in the RUP occurs at

two levels.

Supporting Disciplines and workflows

Rational Unified
Process

SCS 2003- 85

two levels.

• a coarse -grained or Phase plan : describes

the entire project, and

• a series of fine-grained or Iteration plans :

describe the iterations.

• Project management discipline

– does not attempt to cover all aspects of

Supporting Disciplines and workflows

Rational Unified
Process

SCS 2003- 86

– does not attempt to cover all aspects of
project management e.g.

• Managing people: hiring, training, coaching

• Managing budget: defining, allocating, and
so forth

• Managing contracts, with suppliers and
customers

• Project management discipline

– focuses mainly on the important aspects

Supporting Disciplines and workflows

Rational Unified
Process

SCS 2003- 87

– focuses mainly on the important aspects

of an iterative development process

• Risk management

• Planning an iterative project, through the

lifecycle and for a particular iteration

• Monitoring progress of an iterative project,

metrics

• Environment discipline
– focuses on the activities necessary to configure

the process for a project.

Supporting Disciplines and workflows

Rational Unified
Process

SCS 2003- 88

the process for a project.

– describes the activities required to develop the
guidelines in support of a project.

– provide the software development organization
with the software development environment-
both processes and tools-that will support the
development team.

