
Identifying Classes, Packages and
drawing a Class diagrams, Object

diagrams

Visualizing a Class

• Represented by a rectangle

• Class naming
– represented by a word with an initial uppercase

letter.letter.

– Appears near the top of the rectangle

– If the class has two word name, join the two words
together and capitalize the first letter of the second
word.

WashingMachine UML Class icon

Attributes

• A property of a class

• Describes a range of values that
the property may hold in objects of
that class.

• A class may have zero or more

WashingMachine

brandName

modelName• A class may have zero or more
attributes.

• If name consists of more than one
word the words are jointed and
each word begins with a
uppercase letter.

modelName

serialNumber

capacity

Operations

• Something a class can do

• Can indicate additional
information for operations.

WashingMachine

brandName

modelName
information for operations.

modelName

serialNumber

capacity

acceptClothes()

acceptDetergent()

turnOn()

turnOff()

Working with Relationships

5

The Need for Relationships

• All systems are made up of

objects and classes.objects and classes.

• System behavior is achieved

through the interactions of the

objects in the system.

• For example : When a member wants to borrow a
book in a library system (borrowing use case), the
system has to interact with the following objects:
book, copy, borrower and borrowed copy

The Need for Relationships

book, copy, borrower and borrowed copy

• For the borrowing use case following are some of the
messages that these objects have to send and
receive.

checkBorrowerId , checkCopyBorrowable, checkOverdue,
checkOverlimit etc.

• Relationships provide the conduct for

object interactions.

The Need for Relationships

• A relationship is a semantic connection

between classes.

• It allows one class to know about the

attributes, operations of another class.

• In order for one class to send a message to
another on a sequence diagram or
collaboration diagram (see later), there must
be a relationship between the two classes.

The Need for Relationships

be a relationship between the two classes.

• There are four types of relationships you can
set up between classes.
Association, Aggregation, Generalization and
Dependency.

• Indicate a connection (a link) between classes.

• Each class can send messages to the other.

• It can be bi-directional or unidirectional.

• In UML, bi-directional associations are drawn either

Associations

• In UML, bi-directional associations are drawn either
with arrowheads on both ends or without arrowheads
altogether.

Customer Orders
1 0..*

Borrower BorrowedCopy
1 0..5

Associations

• Name of the association is written just above
the line.

• The way to read a relationship can be shown
using a filled triangle pointing in the using a filled triangle pointing in the
appropriate direction (optional).

Player Team
Plays on

Player Team
Plays on

Associations

• Several classes can connected to one class.

Example:

Team

Guard

Forward

Center

Plays on

Constraints on
Associations

• An association between two classes has to follow a
rule.

• You can indicate that rule by putting a constraint near
the association line.the association line.

Example:

BankTeller CustomerServes {ordered}

Constraints on
Associations

• Or relationship
– Signified by {or} on a dashed line that connects two

association lines

Example: a high school student can choose either an
academic course of study or a commercial one.

HighScoolStudent AcademicChooses

{or}

CommercialChooses

Associations

• Links

– An association may contain instances

e.g. a specific player who plays for a specific team. e.g. a specific player who plays for a specific team.

johnDoe : Player tyrannosaurs : Team
Plays on

• Multiplicity
– The number of objects from one class that relate

with a single object in an associated class.

– Multiplicity can be denoted near the appropriate

Associations

– Multiplicity can be denoted near the appropriate
class

Borrower BorrowedCopy
1 0..5

1 Exactly one

0..* Zero or more

Multiplicity

1..* One or more

0..1 Zero or one

5..8 Specific Range (5,6,7 or 8)

• Some times a class is in an association with itself.

• This can happen when a class has objects that can
play a variety of roles.

• Representation:

Reflexive Associations

• Representation:

– Draw an association line from the class rectangle back to the
same class rectangle

– On the association line indicate the roles, name of the
association, direction of the association, and multiplicity.

Reflexive Associations

CarOccupant

driver

passenger
Drives

1

0..4

• A carOccupant can be either a driver or a passenger

• In the role of the driver, one carOccupant drives zero

or more additional carOccupants who play the role of

passenger

passenger0..4

C o u r s e O ffe r i n g C o u r s e

0 ..*
0 ..*

0 ..*
0 ..*

+ P r e - r e q u i s i te s

Reflexive Associations

• One Course object playing the role of

Prerequisite is related to zero or more course

objects.

• One Course object is related to zero or more

course objects playing the role of Prerequisite.

• Provides the capability to create a hierarchy of
classes.

• Common structure and behavior are shared among
classes.

Inheritance
(Generalization)

classes.

• The term super-class or parent class is the name
given to the class holding the common information.

• The descendants are called subclasses or child
class.

• A subclass (child class) inherits all
attributes,operations, and relationships that are
defined for all of its super-classes (parent class).

• An inheritance relationship:

– is not a relationship between different objects.

– is a relationship between different classes.

Inheritance
(Generalization)

– is never named.

– Role names are not used.

– Multiplicity does not apply.

• Inheritance is the key to reuse.

– A class can be created for one application

– A sub class may be created to add more
information needed for a different application.

• There are two ways to find inheritance in any
system: Generalization and Specialization.

• Generalization provides the capability to create

Inheritance
(Generalization)

• Generalization provides the capability to create
super-classes that encapsulate structure and
behavior common to several classes.

• Specialization provides the ability to create
subclasses that represent refinement to the
super-class. Typically structure and behavior are
added to the new subclass.

Animal

Inheritance
(Generalization)

ReptileAmphibian Mammal

Horse

• A class might have no parents in
which case it’s a base class / root
class.

Inheritance
(Generalization)

class.

• A class might have no children in
which case it’s a leaf class.

• Single inheritance - a class has exactly
one parent.
– Savings A/C is a kind of Account.

Single inheritance vs
multiple inheritance

– Savings A/C is a kind of Account.

• Multiple inheritance – a class has more
than one parent.
– Interest cheque A/C is a kind of Savings A/C

and also a kind of Current A/C.

Abstract Class

• Intended only as bases for inheritance

• Provides no objects of their own

• Indicated by writing the name of the abstract class
in italicsin italics

e.g.
Abstract
class

Dependencies

• In a dependency one class uses another

• Most common usage is to show that a signature in

the operation of one class uses another class.

• Depicted as a dashed line joining the two classes • Depicted as a dashed line joining the two classes

in the dependency, with an arrow head adjoining

the depended-on class.

Class diagrams and
Object diagram

• Class diagram: gives general, definitional

information – the properties of a class and

its attributes, and other classes it its attributes, and other classes it

associates with.

• Object diagram: gives information about

specific instances of a class and how they

link up at specific instants in time.

Class Diagrams :

– Shows set of classes, interfaces, and

Class diagrams and
Object diagram

30

– Shows set of classes, interfaces, and

collaborations and their relationships.

– Most common diagram found in modelling

object-oriented system.

– Address the static view of a system.

class: a category or group of things that have

the same attributes and the same behaviours.

Class diagrams and
Object diagram

31

Class Diagram

e.g. School of Computing

Object Diagrams :

– Similar to a class diagram

– Models actual object instances with

Class diagrams and
Object diagram

32

– Models actual object instances with

current attribute values.

– Shows a set of objects and their

relationships.

– Provides a snap shot of the system’s

object at one point in time.

Object Diagram

e.g.

Class diagrams and
Object diagram

33

e.g.

thisWhiteQueen:Queen thisBlackKnight:Knight

thisWhitePawn:Pawn

Is being attacked by

Is strategically positioned against

• An Object is a representation of an entity.

• It can represent something concrete, such

as Harsha’s truck or concept such as a

What is an object?

as Harsha’s truck or concept such as a

bank transaction or a purchase order.

• Each object in a system has three

characteristics: state, behavior, and

identity.

• The State of an object is one of the

possible conditions in which it may exist.

e.g. States of a Hotel Room are occupied,

State, Behavior and identity

e.g. States of a Hotel Room are occupied,

available, and reserved.

• The state of an object typically changes

over time.

• Behavior determines how an object
responds to requests from other objects.
– Behavior is implemented by the set of

operations for the object.

State, Behavior and identity

operations for the object.

• Identity means that each object is unique,
even if its state is identical to that of
another object.

IT 3101
UML notation

for an object

• A Class is a description of a group of objects
with common properties (attributes), common
behavior (operations), common relationships
to other objects, and common semantics.

What is a class?

to other objects, and common semantics.

Module

Code

…..

IT3101

IT1101

Objects

A Class

• Backbone of nearly all OO Methods.

• A class diagram describes the types of objects in
the system and the various kinds of static
relationships that exist among them.

• It also shows the attributes and services of a class

Class Diagrams

• It also shows the attributes and services of a class
and the constraints that apply to the way objects are
connected.

Book

Title
Author

GetAuthor(int)

AccnoUML Notation

for a Class

Copy

Member Book

1 1..*

1..*

1

1

39

Borrowed Copy Reserved Copy

0..3
0..2

Class Diagram for a library system

1
1

0..*0..1

A Stereotype is a mechanism you can use to

categorize your classes.

– Say you want to quickly find all of the forms

Stereotypes and Classes

in the model,

– You could create a stereotype called form,

and assign all of your windows this

stereotype.

– To find your forms later, you would just need

to look for the classes with that stereotype.

• There are three primary class stereotypes in UML.

Boundary

Stereotypes and Classes

Boundary

Entity

Control

Boundary Class:

• They provide the interface to a user or another

Stereotypes and Classes

• They provide the interface to a user or another

system. (ie. Interface to an actor).

• Handles communication between system

surroundings and the inside of the system.

• To find the Boundary classes, you can examine

your Use Case diagram,

Boundary Class:

• At a minimum there must be, one Boundary class

Stereotypes and Classes

for every actor-use case interaction.

• Boundary class allows actor to interact with the

system.

Boundary Class
Actor 1 Use Case 1

Boundary Class:

• You do not necessarily have to create a unique Boundary
class for every actor-use case pair.

Stereotypes and Classes

• Two actors may initiate the same use case.
• They might both use the same Boundary class to

communicate with the system.

Boundary Class
Actor 1

Use Case 1Actor 2

Finding Boundary Classes

• These are classes that mediate between
the subject (System boundary) and its
environment.

– User Interface class – classes that interface

between the system and humans;

45

between the system and humans;

– System Interface class – classes that

interface with other systems;

– Device Interface class – classes that interface

with external devices such as sensors;

Entity Class
• They are needed to perform task internal

to the system. Reflect a real world entity.

Stereotypes and Classes

to the system. Reflect a real world entity.

Identifying Entity Classes

• Identify the nouns and noun phrases used
to describe the responsibilities.

Entity Class

• The initial list of nouns must be filtered because,

– it could contain nouns that are outside the
problem domain.

Stereotypes and Classes

problem domain.

– nouns that are just language expressions.

– nouns that are redundant.

– nouns that are attributes.

Stereotypes and Classes cont..

Control Class:

• Sequencing behaviour specific to one or
more use cases.

• There is typically one control class per

48

• There is typically one control class per
use case.

• Co-ordinates the events needed to
realise the behaviour specified in the
use case.

Eg. Running or executing the use case.

Finding Controller Classes

• Simple behavior can often be distributed
between Boundary or Entity classes

• Consider more complex behavior of the
system as described by the use cases.

• Work out how these behavior should be
partitioned among the analysis classes.

49

partitioned among the analysis classes.

• Control classes process messages from
an interface class and respond to them by
sending and receiving messages from the
entity classes.

Purpose of a Package

• If a system contained only a few classes, you
could manage them easily.

Package Diagrams

• Most systems are composed of many classes.

• Packages are used to group them together for
ease of use, maintainability, and reusability.

• By grouping classes to packages we can

look at the higher level view of the model.

• Package diagrams help you to maintain

Package Diagrams

• Package diagrams help you to maintain

control over a system’s overall structure

People Information UML Notation

• Surround the grouped elements with

a tabbed-folder icon.

• To reference an element in a

Package Diagrams

• To reference an element in a

package the notation is

PackageName::PackageElement

e.g. Tools::Hammer

Inter-package Relationships

• Packages can generalize

another, depend on

another, or refine another

• Relationship type is a

dependency relationship.

• It is shown as a dashed

arrow to the dependent

package.

Package A Package B

Client Supplier

• If package A depend

on package B:

Inter-package Relationships

– One or more classes in package A initiates communication
with one or more public classes in package B.

– Package A is referred to as the Client package, whereas
package B is referred to as the Supplier package.

Discovered by examining the scenarios and class relationships.

Client Supplier

Merging Packages

• A package can be merged with another.

• The merge relationship is a kind of

dependency between the package that dependency between the package that

does the merging (the source) and the

package that gets merge.

• The result of a merge is that the source

package is transformed.

Aggregation

• An aggregation is

a stronger form of

association.

• It is a relationship • It is a relationship

between a whole

and its parts or

composition.

Aircraft Engine
0..*0..*

*** Removed in UML 2.x

Composites

• A strong type of aggregation

• Each component in composite can belong to just

School Department

1 1..*

• Each component in composite can belong to just
one whole

• Can be denoted using a filled diamond.

CoffeeTable

TableTop Leg

1

1 4

Interfaces and
Realizations

• Interface: a set of operations that
specifies some aspect of a class’s
behavior, and it’s operations a class behavior, and it’s operations a class
presents to other classes.

• Realization: the relationship between a
class and its interface

• Modeling an interface is similar
to modeling a class

• Interface can be modeled using

Interfaces and
Realizations

<<interface>>• Interface can be modeled using
a rectangle icon.
– This icon has no attributes.

– Add the keyword
<<interface>>above the name of
the interface in the rectangle.

<<interface>>

ControlKnob

• The symbol for the realization relationship
between a class and its interface looks like
the symbol for inheritance, except the line to

Interfaces and
Realizations

the symbol for inheritance, except the line to
the open triangle is dashed instead of solid.

<<interface>>

ControlKnob

WashingMachine

