Object Oriented Design and
Modeling using UML

Design of an Object Oriented System

Introduction

* Object Oriented Design (OOD)

— An approach used to specify the software
solution in terms of collaborating objects,
their attributes, and their methods.

UCSC

Different types of
Object classes

* Entity classes

— An object oriented class that contains business
related information and implements the analysis
classes.

— Correspond to items in real life (e. g. MEMBER
/ ORDER) and contain information known as
attributes that describes the different instance
of the entity.

Different types of
Object classes

* Interface classes (Boundary Classes)

— An object class that provides the means
by which an actor can interface with the
system.

—e.g. a window, dialog box, screen
— Also known as boundary class

UCSC

Different types of
Object classes

* Interface classes (Boundary Classes)

— The responsibility of an interface class is
twofold,

« Translates the user’s input into information that the
system can understand and use to process the
business event

« Takes data pertaining to a business event and
translates the data for appropriate presentation to
the user.

Different types of
Object classes

« Control classes
— An object class that contains application logic

— Implement the business logic or business rules
of the system

— Process messages from an interface class and
respond to them by sending and receiving
messages from the entity class.

Different types of
Object classes

e Persistence Classes

—An object class that provides functionality to read
and write attributes in a database. The
functionality could be built into the entity classes.

—But if that functionality is put into a separate
persistent (data access) classes, the entity
classes are kept implementation independent.

Different types of
Object classes

« System Classes

— An object class that handles operating system
specific functionality

— If the system is ported to another operating
system only the system classes and perhaps
the interface classes have to be changed.

&5

i

i

&)
UCsC

Design Relationships

 In object-oriented analysis, identify the most
common object relationships.

* In object-oriented design, model more advanced
relationships in order to accurately specify the
software components.

Design Relationships

« Dependency Relationships

— Used to model the association between two classes in
two instances:

» To indicate that when a change occurs in one class, it may affect
the other classes

« To indicate the association between a persistence class and an
interface class

¢ e.g.

<>

Place new order handler € — = = = = = = T

Design Relationships

* Navigability
— lllustrated with an arrow head pointing only to
the direction a message can be sent.

— By default associations between classes are
bi-directional, meaning that classes of one
Kind can navigate to classes of the other class

— However, there may be times when you want
to limit the message sending to only one
direction.

Attribute and Method
visibility
. Visibility:
— The level of access an external object

has to an attribute or method

— UML provides three levels of visibility
 Public (+)
 Protected (#)
* Private (-)

Attribute and Method
visibility

Public attributes can be accessed and public methods can
be invoked by any other method in any other class.

Protected attributes can be accessed and protected methods
can be invoked by any method in the class in which the
attribute or method is defined or in subclasses of that class.

Private attributes can be accessed and private methods can
be invoked only by any method in the class in which the
attribute or method is defined.

Attribute and Method
visibility

 |If a method needs to be invoked in response to a
message sent by another class, the method
should be declared public.

* |n most cases all attributes should be declared
private to enforce encapsulation.

Address

- | -street : String
€.g. -city : String

+getStreet() : String
+getCity() : String

Object responsibilities

* The obligation that an object has to provide
a service when requested

* Thus, collaborate with other objects to
satisfy the request if required.

» Closely related to the concept of being able
to sent and/or respond to messages.

UCSC

The process of Object-
Oriented design

* During OOA

— Define use cases and identify objects
based on ideal conditions

* During OOD

— Refine the use cases and objects to
reflect the actual environment of the
proposed solution.

UCSC

The process of Object-
Oriented design

« OOQOD includes the following activities
— Refining the use-case model to reflect the
Implementation environment

— Modeling class interactions, behaviors, and
states that support the use-case scenario

— Updating the class diagram to reflect the
Implementation environment

Refining the use-case model

 Use-cases will be refined to include
details of

— how the actor will actually interface with
the system

— how the system will respond to that
reaction to process the business event

Refining the use-case model

 The manner in which the user access the
system should be described in detalil.

— e.g. Via a menu, window, button, barcode
reader, printer

* The contents of windows, queries, and
reports should be specified within the use
case

UCSC

Refining the use-case model

« Steps to adapt each use case to the
Implementation environment

— Step1: Transforming the “Analysis” use cases
to “Design” use cases

— Step2: Updating the use-case model diagram
and other documentation to reflect any new use
cases

For more information refer ref1 pg 651-655

Modeling class interactions,
behaviors, and states that support
the use-case scenario

« Step1: Identify and classify use-case design
classes

« Step2: Identify class attributes

« Stepd: Identify class behaviors and
responsibilities

For more details refer ref1 pg 656-665

LT
‘:g:i.'.ﬁ-a

Updating the object model to
reflect the implementation
environment

* Once the objects and other interactions have
been design, class diagram can be refined to
represent software classes in the application

« Design class diagram : a diagram that depicts
classes that correspond to software components
that are used to build the software application.

Updating the object model to
reflect the implementation
environment

« A design class diagram includes the following
— Classes
— Associations , gen/spec and aggregation relationships
— Attributes and attribute type information
— Methods and parameters
— Navigability
— Dependencies

For more details refer ref1 pg 665-666

Object reusability and Design
patterns

« Two very important goals of OOD
— Low coupling
— High Cohesion

* Coupling : the degree to which one class is
connected to or relies upon other classes

« Cohesion : the degree to which the attributes and
behaviors of a single class are related to each other

Object reusability and Design
patterns

» Reasons behind high cohesion and low
coupling
— Each class focuses on one thing
— Classes are independent

— object reusability: object classes created for
one information system should be able to
reused in other information systems.

&5

i

i

@ﬁ
UCSC

Design Patterns

» Object oriented developers look for the
same reuse opportunities through the use
of design patterns

* Design patterns: a common solution to a
given problem in a given context, which
supports reuse of proven approaches and
techniques.

UCSC

Object Reusability and Design

Patterns
Design Patterns

Definition:

* A patternis a recurring solution to a standard
problem, in a context.(Alexander et al., 1997)

* A pattern describes a problem which occurs
over and over again in our environment, and
then

 Describes the core of the solution to that
problem, in such a way that

— you can use this solution a million times over,
— without ever doing it the same way twice.”

27

Patterns in engineering

» How do other engineers find and use patterns?

— Mature engineering disciplines have handbooks
describing successful solutions to known problems

— Automobile designers don't design cars from scratch
using the laws of physics

Instead, they reuse standard designs with successful
track records, learning from experience

— Why should software engineers make use of
patterns?

« Developing software from scratch is also expensive

— Patterns support reuse of software architecture and
design

; 28
uese

The “gang of four”
(GoF)
» Erich Gamma, Richard Helm, Ralph Johnson

& John Vlissides (Addison-Wesley, 1995)

— Design Patterns book catalogs 23 different
patterns as solutions to different classes of
problems, in C++ & Smalltalk

— The problems and solutions are broadly
applicable, used by many people over many
years

— Why is it useful to learn about this pattern?

« Patterns suggest opportunities for reuse in
‘,,, analysis, design and programming
UCSC

29

GoF says, In general, a pattern has

UCSC

four essential elements:

. Pattern name
. Problem: describes when to apply

the pattern

. Solution :describes the elements

that make up the design, their
relationships, responsibilities, and
collaborations

. Consequences : are the results and

trade-offs of applying the pattern.

30

> Object Reusability and Design Patterns
Ref: SAD Methods, Whitten, Bentley 7t Ed, 2007

» Consider Place New Order sequence
diagram in an Order Processing System

O
O [Ee=loliEt o Member Order | | Mombor Ordered Product Product
Marmber | | | | i
| hem Sslectiors | 0 L I | |
3 _ flaon) | | |
ad:lltem(rtem,-:um'rw I | I
o S cakulatsQty InStoskiprodusthumber) | s
&
: ghyinStock :
% ___________ B e T e e |_ ________
agditam{productNurnier, quantityOrdered) 0 (7] :
& | ::)mmmaf |
|
cakEaPricafitem) | | oo |
O ey e ~
i T |
Updated Ordor | |, _“PEREOMEIR | |
SRR S T | |
= | | |

uese Figure 1

Slide 31

D1 DELL, 4/9/2014

Object Reusability and Design Patterns

 Alternative way - Place New Order
sequence diagram

i ==intarface- =mantroller-- . . .
:m ‘Flacs New Oirdar ‘Mamizar Order ‘Mearmbzer Urdered Froduct ‘Producst

Mambar : : i : i
| Iem Selecions | 1 | | |
k. 1 |
= | | |
additerreitem, qhantity) : I | I
4 Eddhﬂﬂpﬂdmﬂmbanmmuﬂmm}fﬁl | k{procuctNumber] . I

iE \ 7

- ————— _I:|‘|:]l'_|r11_ _______
getPiroduct T

™

7 I
getPrice{producthurmber) . |

f rd
::) valuExIP : H
TS caleTol | I
U d Cird ar |rfo I |

ba

Updated Order | | _ CposedOmerinte | |
T TN T T T T | |
3

Object Reusability and Design Patterns

Figure 2
;-:m ;w froller=> | Member Order| | :Member Ordered Product| | :Product

Mamber i i | : |
| Iem Selecions IJ'I ! | |
— loap ‘ : I i

additerr{itern, quant

‘”‘Uﬂ WIJ' calculatetyinStock(productNumber) |

Places more ‘ DR = S _
responsibility g -E] 1
on Member goPiestprofuctinted o4
Order Entity ‘ O lcExPica| T
Class | et | i

|_I_| Epiat_ed_ﬂfar__ %___Llp-_:lat_e-:l_ﬂfeilriﬂ____ i i

33

D1

Object Reusability and Design Patterns

» Consider Place New Order sequence
diagram in an Order Processing System

Figure 1
9 0
o ST O || © Member Order | | Member Ordered Product :Product

Dirder Window Place New Ord

Merrber i i i I |
temn Selections 9 L | | !

g o) | | |

't“i:'c“mmg najmmauqm:&mqpmdmﬂumm l . |
Place New Z i ens DR R D
Order | addtern{procuctumber;quaniiy Orderec) :Dn, 7] :

7 caleTotal
Controller cacapicagny [| oo |
does all the | o %mmﬁ >

—————— |

wo rk' Updated Order &= _Ufimia_'df Iifc'_ - : :
S . i : |

feo 34
UCSC

Slide 34

D1 DELL, 4/9/2014

Coupling and Cohesion

« Two overall goals of OOD are
— LOW Coupling
— HIGH Cohesion

« Coupling : The degree to which one class is
connected to or relies upon other classes.

« Cohesion : The degree to which all of the
attributes and behavious of a single class are
related to each other.

)

%

Coupling and Cohesion
cont..

* The reason behind the goals of low
coupling and high cohesion is Object

Reusability.
Object REUSED

Class!

IS IS

|
Siin
e
D
i

36

Object Reuse

« Several studies have documented the success of object
Reuse. [

[1] — “ White paper on Object Technology : A Key software
technology for 90s “- Computer World , May 1992

Electronic Data Systems initiated two projects to develop the
same system using two different languages.

Programming Project Duration Level of Effort Software Size

Language (calendar months) (person-meonths) (lines of code)
PL/1 19 152 2465000
Smalltalk 3.5 10.4 22,000

37
uese

Cohesion and Coupling in Place
Order example.

Figure 2
Drder Windos: Pl i Ot Member Order | | Member Ordered Product| | ;Produet

Mernber _ ! : i : i
ItamE-aIe-:hmEL IJ'I ! | !
. m ﬂﬂ | | |
ﬂ "'"""‘T'“‘E"‘-'JE'Q'] mwﬂﬁaﬂl | |
Higher Coupling : e v ,E

than Figure 1 - | ¢ o]
Member order is B e Iil
related to more | Lower cohesion : Member —2L_

U classes o

order is responsible for
getting the quantity in stock
out of product.

UCSC

Design Patterns

“Don’t reinvent the Wheel” : it means do
not write software to solve a problem that
someone else has already written to solve
correctly and efficiently.

Many companies take this approach for
developing new applications.

This will save time and money.

OQ developers look for the same reuse
opportunities through the use of Design
Patterns.

39

Design Patterns

» The goal of a pattern is not to discover or
iInvent a new solution to a problem.

« But to formally structure an existing solution to
a common problem.
— So that others may use it and take advantage of it.
* They are not :

— Data structures that can be encoded in classes
and reused as is (i.e., linked lists, hash tables)

— Complex domain-specific designs
(for an entire application or subsystem)

o] 40
uese

Three Types of

Patterns (GoF)
* Creational patterns:

— Deal with initializing and configuring classes
and objects

 Structural patterns:

— Deal with decoupling interface and
implementation of classes and objects

— Composition of classes or objects

- Behavioral patterns:

— Deal with dynamic interactions among
societies of classes and objects

— How they distribute responsibility

UCSC

Three Types of Patterns (GoF)

Gang-of-Four Patterns

Creational Structural Behavioral
Abstract factor Adapter Chain of responsibility
Builder Bridge Command
Fadory method Composite Fhywaight
Prolotype Decorator Interpreter
Singleton Facade terator
Proocy Mediator

Mameanto

Observer

State

Strategy

Template method

Visitor

Singleton pattern
(creational)

- Ensure that a class has only one instance and provide a
global point of access to it

singleton
+$instance L 1 getinstance() Mo
-Singleton() returns unigue instance
class Singleton +getinstance()
{ public:
static Singleton* getInstance();
protected:

Singleton () ;
Singleton(const Singletoné&);
Singleton& operator= (const Singleton&);
private: static Singleton* 1instance;
¥
Singleton *p2 = pl->getInstance();

Ref:
https //www .youtube.com/watch?v=nhloDnzn5yM&list=PLgq
lIlRpjISS921Ax7YBqQOrtyAcpgdsjm&lndex-40

Structural patterns

* Describe ways to assemble objects to realize
new functionality

— Added flexibility inherent in object composition
due to ability to change composition at run-time

— not possible with static class composition
« Example: Proxy

— Proxy: acts as convenient surrogate or
placeholder for another object.

 Remote Proxy: local representative for object
In a different address space

* Virtual Proxy: represent large object that
should be loaded on demand
v Protected Proxy: protect access to the original
wse Object

Adapter Pattern- Another Example
« SoundStage MembervServices system has to
calculate sales tax on orders.

« Keeping up on all the varying laws in country or
province is a difficult task.

» Therefore SoundStage will want to buy prewritten
tax calculation classes and plug them into the
member service system.

* They found more than one vendor who could
supply them with the classes.

« Each vendors classes provides different set of
methods to call.

2N Design the system : if they change vendors, very
csc few modifications need to be done.

Adapter Pattern- Example cont..

» Given example : SoundStage Member
Services system
Pattern: Adapter

Category. Structural
Problem: How to provide a stable interface to similar classes with different

interfaces,
Solution: Add a class that acts as an adapter to convert the interface of a class
into another interface that the client classes expect

Adapter Pattern describe ways to assemble
objects to realize new functionality

i 46
uese

Implementation of Adapter Pattern
for SoundStage

Member Order

srdaridambar
-oidarCeationDiate
-oiderFilDate

-hippirginatrictiors
~orderSub Total
-orderSalesTax
~ordarShippingMethad
-orderShipping&Handling Cost
ordarSilatus
-oiderPrapaldAmount
-ordarPrepaymarntMethod

Sales Tan Adapter

+ealcSalesTax()

i

Brand X Adaper

yealebalesTan)

Brand X Sales Tax Galcu'ator

sealeTa)

47

Implementation of Adapter Pattern
for SoundStage

Member Order

-idariamber
~orderCreationDate
~oidarFilDate
-hippirginatrictiors
~ordarSub Total
-orderSalesTax
~ordarShippingMethad
-orderShipping&Handling Cost
orderSlatus

-oiderPrapaidi-

Sales Taxn Adapter

+ealcSalesTax()

¢

er

- Provides and unchanging

Brand X Sales Tax Galcuator

method (calcSalesTax) for

”,, the rest of the system to call

48

Implementation of Adapter Pattern
for SoundStage

TO integrate in the Sales Tan Adapter
purchased class(
Brand X Sales Tax A +calcSalesTax(

Calculator) We [f

Write d hew ClaSS Brand X Adapier Brand X Sales Tax Galcuator
(Brand X Adapter) || 7

that inherits from | =% KT

Sales Tax Adapter

class

49

Implementation of Adapter Pattern

for SoundStage
Member Order Sales Tax Adapter
AeaT)
It translate ff
(adaptS) the ca" Brand X Adapier Brand X Sales Tax Galculator
from the system | - ?
+elBalesan] +aleTa)

into a call that
purchased class
can accept.

50

Implementation of Adapter Pattern

for SoundStage
If we ever
change the Sales Tax Adapter
vendors, then fasen
we have only to /’ff
Write a new Brand X Adapier Brand X Sales Tax Galculator
adapter T ?

+ealebalasax) sl e

subtype;
everything else
stays the same. .

Behavioral patterns:

» Deal with dynamic interactions
among societies of classes and
objects

* Provide guidance on the way In
which classes interact to
distribute responsibllity.

UCSC

52

The Strategy
Pattern

Pattern: Sirategy

Category. Behavioral

Preblem: How to design for varying and changing policy algorithms.
solution: Define each algorithm in 2 sepirate class with a common Interface

\;-:s, 53
UCSC

Example
Modes of transportation to an airport is an example

of a Strategy.

Several options exist, such as driving one's own car,
taking a taxi, an alrport shuttle, a city bus, or a
limousine service.

Any of these modes of transportation will get a
traveler to the airport, and they can be used
interchangeably. The traveler must choose the
Strategy based on tradeoffs between cost,
convenience, and time.

TransportationT ofirport Q—.. Strategies (Options)

CrotosAarport(Time, Cost)

- o b .
Personal Car Tax1 Cab TLamousine City Bus

Another Example

e Say a company X is running
Promotions

 When a member places an order may
use any nhumber of promotions

—Based on total $ amount of the order
—Based on number units they purchased
—Based on the kind of the product ordered.
—Some provide a % discount

—Some $ amount discount etc.

uese

Strategy Pattern : Promotion Example
cont..

* Programming code to apply to each
Kind of promotion is significant.

* More importantly it is constantly
changing — (new promotions from
marketing people)

o) 56
UCSC

Strategy Pattern : Promotion
Example cont..

 How can the system incorporate
existing and new promotions without
constantly rewriting code/classes?

Pattern: Strategy
Category. Behavioral

Preblem: How to design for varying and changing policy algorithms,
solution: Define each algorithm ina separate class with a common Interface.

sl
\;-:s, 5 7
UCSC

Promotion Example cont..

Other Promoticn

Promation
+eak:Discount{in mamberOnder)
Total Dollar Percent Discount Total Unit Dollar Discount
-parcentDiscount -amountDiscount M
-amaountThreshold -unifThreshold 1M
+calcDiscount(n memberOrdar) +ealcDiscountlin memberOrdar) +caleDiscountin memberOrdar)

Each class has a standard interface
method called calcDiscount to return

&) the $ amount.

58

Strategy Pattern : Promotion

Example cont..

Other Promotion

Promaticn
+eak:Discountin mamberOnder)
Total Dollar Percent Discount Total Unit Dollar Discount
-percentDiscount -amountDiscount -1
-amountThreshold -unitThreshold -1
+caleDigcountin memberOrder) +caleDiscountin membarOrder) +ealeDiscountin memberOrder)

Internal code to calculate each
promotion will be entirely different for

&) each promotion class.

59

Strategy Pattern : Promotion

Example cont..

Promaticn
+eak:Discountin mamberOnder)
Total Dollar Percent Discount Total Unit Dollar Discount Orther Prometion
-percentDiscount -amountDiscount -1
-amountThreshold -unitThreshold -1
+caleDigcountin memberOrder) +caleDiscountin membarOrder) +ealeDiscountin memberOrder)

CalcDiscount method is designed to be
passed to the entire member order

N

Instance as a parameter.

60

