
Working with State
Diagrams

• Use Cases and Scenarios provides a way to
describe system behaviour.

• Use Case – Typical interaction between a
user an a computer system.

1

user an a computer system.

• Scenario – Instance of a Use Case

• Interaction Diagrams – Capture Scenarios.

Shows object interactions arranged in time
sequence.

• Some times it is necessary to look at the
behaviour inside an object.

• As the system interacts with users and other

systems,

– The objects that make up the system go through

necessary changes to accommodate the interactions.

• If you are going to model systems, you must

Working with State
Diagrams

2

• If you are going to model systems, you must

have a mechanism to model change.

• One way to characterize change is to say that its

objects change their state in response to events

and to time.

Working with State Diagrams

Examples:

– When you throw a switch, a light changes its state

from Off to On.

– After an appropriate amount of time, a washing

3

– After an appropriate amount of time, a washing

machine changes its state from Washing to Rinsing.

– Hotel room changes its state to available, reserved

and occupied.

•UML State diagram captures these kinds of

changes.

Working with State Diagrams

• UML State Transition Diagrams shows:
– Life history showing the different states of a

given object.

– The events or messages that cause a
transition from one state to another.

4

transition from one state to another.

– The actions that results from a state change.

• State Diagrams are created only for
classes with significant dynamic
behaviour.

eg. Hotel Room in a Hotel Reservation
System

Modeling Dynamic Behaviour

• Interaction diagrams can be studied to
determine the dynamic objects.

– Objects receiving and sending many

messages.

5

messages.

• If you have an attribute called status.

– This can be a good indicator of various

states.

States

• eg. HotelRoom object can be in one of the
following states.
– Occupied, Available, Reserved

• eg. Course object (in a course registration

6

• eg. Course object (in a course registration
system) can be in one of the following states.
– Initialization,Open, Close,Cancel

UML Notation for a State

State Transitions

• A State Transition represents a change from an

originating state to a successor state.

• An action can accompany a state transition.

• A State Transition is represented by an arrow that

points from the originating state to the successor

7

points from the originating state to the successor

state.

UML Notation for State Transition

Special States

• There are two special states that are added to the

state transition diagram.

• Start state – Each diagram must have one and only

one start state.

8

• Stop state – An object can have multiple stop states.

Start State Stop State

State Transition Diagram –Hotel Room Class

BICT 9

Hotel Room –
Another example

10

State Transition Diagram– Course Class

Initialization Closed

add student cancelcancel

11

Open Canceled

add student

cancel
closed

State Transition Details

• A State Transition may have the following

associated with:

– an action and/or

(behaviour that occurs when the state transition

12

(behaviour that occurs when the state transition

occurs.)

– a guard condition

(allows state transition only if it is true.)

• A State Transition may also trigger an event

A message that is sent to another object in the

system.

State Transition Diagram
Course Offering with State

Details

Initialization
Open

entry: Register student

exit: Increment count

do: Initialize course

Add Student /

Set count = 0

Add student[count < 10]

13

Closed

Canceled

do: Finalize course

do: Notify registered students

[count = 10]

Cancel

Cancel

Cancel

State Details

• Activity : behaviour that an object carries out

while it is in a particular state.

– An activity is shown inside the state itself,

preceded by the word do and a colon.

14

preceded by the word do and a colon.

• Entry Action :

– Behaviour that occurs while the object is

transitioning into the state.

– Shown inside the state, preceded by the word

entry and colon.

State Details cont…

• Exit Action : occurs as part of the transition

out of a state.

– Shown inside the state, preceded by the word exit

and colon.

15

• The behaviour in an activity, entry action, or

exit action can include sending an event to

some other object.

State Details con…

• In this case, the activity, entry action, or exit

action is preceded by a ^
Do:^Target.Event(Arguments)

Target - object receiving the event

16

Target - object receiving the event

Event - message being sent

Arguments – parameters of the message being sent

Eg.

Do:^CourseRoster.Create

Sub States

• The GUI that we interact in a system, can be in one of three
states.

– Initializing

– Working

– Shutting Down– Shutting Down

• As a result of activities in the initializing state, the GUI
transitions into working state.

• When one chooses to shut down the PC, trigger event is
generated that causes the transition to shutdown state, and
eventually PC turns off.

• When GUI is in the working state, a lot is

happening behind the scenes.

Eg. Type a keystroke, move the mouse, press

a mouse button etc.

Sub States

a mouse button etc.

• It then must register those inputs and change

the display to visualize those actions for you

onscreen.

• Sub states come in two varieties
– Sequential , Concurrent

• Sequential sub states occur one

Sub States

• Sequential sub states occur one
after the other.

– e.g. Sub states of Working state

– Awaiting user input, registering user
input, visualizing user input

• User input triggers the transition from
awaiting to registering

• Activities within registering transition

Sub States

• Activities within registering transition
the GUI into visualizing.

• Thus the GUI goes through changes
while its within the working state.

• Those changes are changes of State.

Sub States

• Those changes are changes of State.

• They are called Sub states because
they reside within a state.

• Sub states come in two varieties.

– Sequential , Concurrent

• Sequential Sub state

Sub States

• Sequential Sub state

– Occur one after the other.

Eg. Sub states within the GUI’s Working

state

• Concurrent Sub state

– Within the working state, the GUI is not just

waiting for you.

Sub States

– It is also watching the system clock and

updating an applications display.

– e. g. Application might include an onscreen

clock that the GUI has to update.

• Concurrent Sub state cont…

– The sequences are concurrent with one
another.

Sub States

another.

– Concurrent sub states proceed at the same
time.

– A dotted line separate concurrent sub states.

UML 2.0 State Diagrams

• UML 2.0 has added some new state

relevant symbols called connection
points.

25

points.

• They represent points of entry into a state

or exists out of a state.

• Lets look at the different state of a book in

a library.

UML 2.0 State Diagrams

• At first the book is residing on a shelf.

• If a borrower has called in to reserve the
book, a librarian retrieves the book and
brings it into the state of “Being checked

26

brings it into the state of “Being checked
out”.

• If a borrower comes to the library, browses
through the shelves, selects the book, and
decides to borrow it.

• Again it enters into the state of “Being
checked out”, but in a different way.

UML 2.0 State Diagrams

• You can think of each way of getting to the
Being-checked-out state as going through
a separate entry point

• Suppose the borrower is trying to borrow

27

• Suppose the borrower is trying to borrow
more than the allotted limit or has number
of unpaid fines.

• If that is the case the book abruptly exits
via an exit point, from “Being-checked-out”
state

Entry points and exit point
in a UML state diagram

[reserved]

28

Residing on shelf Being Checked Out

ended

Why are State
diagrams important?

• They model the changes that just one
object goes through.

• They help analysts, designers, and

29

• They help analysts, designers, and
developers understand the behavior
of the objects in a system.

• A Class diagram and an object
diagram show only static aspects of a
system. They do not show the
dynamic details of the behaviors.

Why are State
diagrams important?

• Developers, in particular, have to know
– how objects are supposed to behave

because they have to implement these
behaviors in software.

30

behaviors in software.

– It is not enough to implement only objects.

– Developers have to make that object do
something.

• State diagrams ensure that they won’t
have to guess about what the object is
supposed to do.

