Working with State
Diagrams

» Use Cases and Scenarios provides a way to
describe system behaviour.

» Use Case — Typical interaction between a
user an a computer system.

 Scenario — Instance of a Use Case
* Interaction Diagrams — Capture Scenarios.

Shows object interactions arranged in time
sequence.

« Some times it is necessary to look at the
behaviour inside an object.

UCSC

Working with State

* As the system int[e)rlgc:%rvavimﬁsers and other
systems,

— The objects that make up the system go through
necessary changes to accommodate the interactions.

 |If you are going to model systems, you must
have a mechanism to model change.

* One way to characterize change is to say that its
objects change their state in response to events
and to time.

@) 2
uese

Working with State Diagrams

Examples:

— When you throw a switch, a light changes its state
from Off to On.

— After an appropriate amount of time, a washing
machine changes its state from Washing to Rinsing.

— Hotel room changes its state to available, reserved
and occupied.
UML State diagram captures these kinds of
changes.

Working with State Diagrams

 UML State Transition Diagrams shows:

— Life history showing the different states of a
given object.

— The events or messages that cause a
transition from one state to another.

— The actions that results from a state change.

» State Diagrams are created only for
classes with significant dynamic
behaviour.

eg. Hotel Room in a Hotel Reservation
System
l:Sl:

Modeling Dynamic Behaviour

* |nteraction diagrams can be studied to
determine the dynamic objects.

— ODbjects receiving and sending many
messages.

* |f you have an attribute called status.

— This can be a good indicator of various
states.

UCSC

States

* eg. HotelRoom object can be in one of the
following states.

— Occupied, Available, Reserved

» eg. Course object (in a course registration
system) can be in one of the following states.

— Initialization,Open, Close,Cancel

[} UML Notation for a State

UCSC

State Transitions

« A State Transition represents a change from an
originating state to a successor state.

* An action can accompany a state transition.

« A State Transition is represented by an arrow that
points from the originating state to the successor
state.

>
UML Notation for State Transition

Special States

There are two special states that are added to the
state transition diagram.

Start state — Each diagram must have one and only
one start state.

Stop state — An object can have multiple stop states.

® ®
Start State Stop State

State Transition Diagram —Hotel Room Class

Create
@ -

[Awilab e

|
o~

Make Reservwation [Cecupied]

\/ Check_in oy
\ Check out
Reserwsd \\
| Cancel Resaervation \

Available]

Check _in

o e

Hotel Room -

Null l
roam requesi

l none

room available F 1 no room available
Requested
decrement room count | l put on list

room available
decrement room count

[Gonfirmed

{ On waiting list]

customer moves in I customer gives up
aone customer cancels camove: froma: [l
increment room count
[Used | Canceled]

customer pays

increment room eount _[Archived l

State Transition Diagram— Course Class

(Initialization
N

add student

11

State Transition Details

A State Transition may have the following
associated with:
— an action and/or

(behaviour that occurs when the state transition
occurs.)

— a guard condition
(allows state transition only if it is true.)

« A State Transition may also trigger an event

A message that is sent to another object in the
system.

12

Initialization

do: Initialize course

Cancel

Canceled

do: Notify registered students

State Transition Diagram
Course Offering with State
Details

Add Student /
Setcount=0

Cancel

Cancel

Add student[count <10]

Open

entry: Register student
exit: Increment count

[count=10]

Closed

do: Finalize course

13

O

State Details

 Activity : behaviour that an object carries out
while it is in a particular state.

— An activity is shown inside the state itself,
preceded by the word do and a colon.

« Entry Action :

— Behaviour that occurs while the object is
transitioning into the state.

— Shown inside the state, preceded by the word
entry and colon.

14
UCSC

State Details cont...

- Exit Action : occurs as part of the transition
out of a state.
— Shown inside the state, preceded by the word exit
and colon.
* The behaviour in an activity, entry action, or
exit action can include sending an event to
some other object.

15
ucse

State Details con...

* In this case, the activity, entry action, or exit
action is preceded by a A

Do:ATarget.Event(Arguments)

Target - object receiving the event

Event - message being sent

Arguments — parameters of the message being sent

Eg.
Do:ACourseRoster.Create

16

Sub States

« The GUI that we interact in a system, can be in one of three
states.

— Initializing
— Working
— Shutting Down

« As a result of activities in the initializing state, the GUI
transitions into working state.

 When one chooses to shut down the PC, trigger event is
generated that causes the transition to shutdown state, and
eventually PC turns off.

Sub States

 When GUI is in the working state, a lot is
happening behind the scenes.

Eg. Type a keystroke, move the mouse, press
a mouse button etc.

* |t then must register those inputs and change
the display to visualize those actions for you
onscreen.

UCSC

Sub States

» Sub states come in two varieties
— Sequential , Concurrent

» Sequential sub states occur one
after the other.

—e.g. Sub states of Working state

— Awaiting user input, registering user
input, visualizing user input

Sub States

« User input triggers the transition from
awaiting to registering

* Activities within registering transition
the GUI into visualizing.

UCSC

Sub States

» Thus the GUI goes through changes
while its within the working state.

» Those changes are changes of State.

* They are called Sub states because
they reside within a state.

UCSC

Sub States

» Sub states come in two varieties.
— Sequential , Concurrent

« Sequential Sub state
— Qccur one after the other.

Eg. Sub states within the GUI's Working
state

Sub States

» Concurrent Sub state
— Within the working state, the GUI is not just
waiting for you.

— It is also watching the system clock and
updating an applications display.

— e. g. Application might include an onscreen
clock that the GUI has to update.

Sub States

« Concurrent Sub state cont...

— The sequences are concurrent with one
another.

— Concurrent sub states proceed at the same
time.

— A dotted line separate concurrent sub states.

UML 2.0 State Diagrams

 UML 2.0 has added some new state
relevant symbols called connection
points.

* They represent points of entry into a state
or exists out of a state.

e Lets look at the different state of a book in
a library.

?/ 25
uese

UCSC

UML 2.0 State Diagrams

At first the book is residing on a shelf.

If a borrower has called in to reserve the
book, a librarian retrieves the book and
brings it into the state of “Being checked
out”.

If a borrower comes to the library, browses
through the shelves, selects the book, and
decides to borrow it.

Again it enters into the state of “Being
checked out”, but in a different way.

26

UCSC

UML 2.0 State Diagrams

* You can think of each way of getting to the
Being-checked-out state as going through
a separate entry point

* Suppose the borrower is trying to borrow

more than the allotted limit or has number
of unpaid fines.

« |f that is the case the book abruptly exits

via an exit point, from “Being-checked-out”
state

27

Entry points and exit point
in a UML state diagram

a N

[reserved]

Residing on shelf

- /

~

Being Checked Out

7

ended

28

Why are State
diagrams important?

* They model the changes that just one
object goes through.

* They help analysts, designers, and
developers understand the behavior
of the objects in a system.

» A Class diagram and an object
diagram show only static aspects of a
system. They do not show the

J dynamic details of the behaviors.

29

Why are State
diagrams important?

* Developers, in particular, have to know
— how objects are supposed to behave

because they have to implement these
behaviors in software.

— It is not enough to implement only objects.
— Developers have to make that object do
something.
« State diagrams ensure that they won’t
have to guess about what the object is
supposed to do.

?/ 30
uese

