Discovering Object Interactions

SCS 2003- 1

Scenarios

The functionality of the use case is
captured in the use case narrative flow
of events section.

A scenario IS an instance of a use case.

It is one path through the flow of events
for the use case.

Scenarios document decisions about
how the responsibilities specified in the
use cases are distributed among the
objects and classes in the system.

SCS 2003- 2

Scenarios cont...

* Provides an excellent communication
medium to discuss systems
requirements with customers.

« Speaks the language of the end users
and the domain experts.

SCS 2003- 3

Documenting Use Cases
Use Case Narratives

UCSC

The Use Case Narratives for a use case is
captured Iin text.

Whereas scenarios are captured in interaction
diagrams.

A Use Case Narrative document is created for
each use case

— Written from an actor point of view

The Use Case Narrative for a use case is a

description of the events needed to accomplish
the required behavior of the use case.

SCS 2003- 4

Use Case Narratives cont..

« Use Case Narratives :
Typical contents

—When and how the use case starts
and ends

—What interaction the use case has
with the actors

—What data is needed by the use case

— The normal sequence of events for
the use case.

— The description of any alternate or
exceptional flows. etc. SCS 2003- 5

Use Case Narratives cont..

Template
* Priority
* Preconditions
* Primary and other participating actors
 Trigger
 Typical Flow of Events
 Alternate Courses
* Post conditions
are included.

The flow of events documentation typically is
created in the Elaboration Phase (a phase in IBM
Rational Unified Process) in an iterative manner

;;, SCS 2003- 6
uese

Eg. Borrowing Scenario Flow of Events
Main Flow
Librarian enters the borrower id.
System checks whether borrower id exist.
If not exist (E-1) end use case.
Else Process
Check for Overdue Books.
If yes (E-2) end use case
Check Over limit (E-3)
If yes (E-3) end use case

SCS 2003- 7

Enter copy Id
Check Borrow able (E-4)

It No (E-4) end use case
Librarian Confirm Borrowing (C-5)
Update Borrowed Copy detalls

Alternate Flows

E-1 : Borrower id exist

E-2 . There are overdue books

E-3 : Borrower has already borrowed 5 books (max)
E-4 : Copy is not borrow able

C-1: Confirm borrowing Message box

SCS 2003- 8

Documenting Scenarios using Interaction
Diagrams
= The flow of events for a use case is captured in text,

= Where as scenarios are captured in Interaction
diagrams.

= UML 1.x uses two types of Interaction Diagrams
Sequence Diagrams,
Collaboration/Communication Diagrams

= UML 2.0 introduces 2 more.

timing, interaction overview
= Each Diagram is a graphical view of the scenario
= Typically associated with Use Cases in the model

W SCS 2003- 9
ucse

Sequence Diagrams

« Shows object interactions arranged
In time sequence.

« Shows the objects and classes
iInvolved in the scenario.

» Shows the sequence of messages
exchanged between the objects
needed to carry out the functionality
of the scenario.

[{0;] SCS 2003-
UCSC 10ADD,Delete

Sequence Diagrams

~cont..
* In UML, an object in a sequence

diagram is drawn as a rectangle,
containing the name of the object,
underlined.

* An object can be named in one of the
three ways:
— Object name,
— Object name and its class,
— Class name (anonymous object)

= SCS 2003- 11
ucse

Sequence Diagrams cont..

« UML Notation for objects and messages
IN @ sequence diagrams Iis shown
below:

ACCNo0-3545 :
Borrowed Copy

:Borrower

getOverdueDetails

o.ﬂ

J Messages between objects SCS 2003 12
UCSC

Messages

« UML represents a message as an arrow that starts at
one lifeline and ends at another.

* An object can also send a message to itself.

« In UML 2.0 following message types are available.

— Call or synchronous » (Sender waits for the receiver
to carry out the operation)

_ (Sender transfers control to the receiver
ATl and doesn’t wait for the operation to

— Return message complete.)
€ — — — — (Modelers often omit this symbol)

Sequence Diagrams and Boundary classes

« Boundary classes are added to sequence
diagrams to show the interaction with the
user or another system.

* During the early analysis phases,
boundary classes are shown on a
sequence diagram only to capture and
document the interface requirements.

» Actual messages from the actor to
boundary class with their sequencing
information will depend on the application
framework that will be selected later in

SCS 2003- 14

System Sequence Diagrams

A tool used by some Analysts in logical
design phase is the system sequence
diagram.

* |t helps us to identify the high level
messages that enter and exit the system.

» Later these messages will become the
responsibility of individual objects.

* These individual objects will fulfill those
responsibilities by communicating with
other objects.

SCS 2003- 15

System Sequence Diagrams

Boundary object

MeSsSSages

mmm
return messages

Eg. System Sequence Diagram Ref 1. pg395

L2] ‘ : MambarSarnvicasSystam ‘
Mambar '

P L5

tamSalactions]kams, quarititias)

-

Shipping and Billing Aaddrass

{______________ R ek s s s Lot A R Sl o

=
Circkar Sumimiary

{______________ i e P A e e S S S R R S e

warify Damographicishi paAddr, billsacddr)

warifyCirdar)

™
=

Paymant Options

..(_::______________ L e et i B S o A o

sakctPaymant pyrmt Ty pa, cochNum . ccExpiraliata)

=

Final Ordar Sumimary

finalizeOrdar() }

Dirdar Comfirmsation

..:_i_ P 1 5 e S s e e s e S

L6

General activities in performing OOA

563
5t

Modeling the functions of the system

Refine the requirements use case model and use case
narratives, Model the use case activities (draw activity
diagrams), Draw system sequence diagram ,

Finding and ldentifying the Business
Objects

Noun analysis, CRC analysis

Organizing the Objects and Identifying the
Relationships

Identify types of relationships between the
objects. Class diagram with problem domain
classes. 18

Sequence Diagram Example

a borrower : a borrowed copy

a copy : copy a book : book

: librarian

borrower : borrowedCopy

borrowing form

1: Enter borrower id
2: checkBorrowerExist() ‘

i |

~4: checkOverdue() |
(5: getOverdueDetails()

H al

3: process

6: checkOverlimit() ‘
] |
|

8: checkCopyExist()‘

7: Enter copy id-

9: getBookDetails ()

L gl

11: confirm borrowina
12: informBorrower()

13: informBorrowedCopy()

10: checkBorrowable()
|
|
|
|
|
|
|

i

19

Sequence Diagrams cont..

 How Complex can a sequence
diagram be?
—Keep them simple
Then it is easy to see:
the objects,
object interactions,

the messages between the objects,
and

the functionality captured by the
scenario. 20

Sequence Diagrams cont..

* How to handle conditional logic?

(If, then, else logic that exists In the real

world)

— If the logic is simple, involving only a few
messages,

add the logic to one diagram, and use notes
to communicate the choices to be made.

— If the logic is complex, involves complicated
messages,

draw a separate diagram- one for the /f case,
one for the then case, and one for the else
case.

This is done to keep the diagrams simple.

21

Sequence Diagrams cont..

* |[n tools such as Rational Rose,
diagrams may be linked to one
another.

» This allows the user to navigate
through a set of diagrams

22

Let us look at the Order Proceesing
example: Purchase ltems

- Customer confirms items in the Shopping Cart and
creates a new order

- Add different items to the order.

Customer provides payment and address to
process sales

- System validate payment Information and respond
with confirmation of order and provides order
number that customer can use to check on order
status.

- System will send confirmation of order details to
.\ customer in an email.
csc =

one using Dash Arrow

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

d

Response

Wﬂ.._
=
m
=n
s
L=
(2]
o
[==
(< F]
=4
[y]
=
=
(<]
&
(4]
24
=
=
—

20132

* PLAYLIST

Happens multiple times

“LlJ._
l-—
m
=n
=
=
[2F]
=l
[=
[<F]
=
[<F]
[¥5]
=
(<K
&
(]
P
=
=
—

20132

PLAYLIST

& @ B B E E EE " S s ESEEsEEEEEd

- o e e o o o e o e] e e e e e e o e e e -

0701. Creating sequence diagrams

20132

* PLAYLIST

Focus of Control (Activation Bar)

"'he focus of control is a small rectangle, that will let
you know which object has control at a particular
point in time.

This is one of the differences between Sequence
and a Collaboration diagram.

The focus of control is shown only on a sequence
diagram. (optional)

:Lecturer Math 1101 - Sectionl :

CourseManager CourseOffering

Focus
_"of Control

Add Lecturer A

27

Collaboration Diagrams/Communication
Diagrams

= An alternative way to show a scenario.

= Shows Object interactions organized around
the objects and their links to each other.

= A collaboration diagram contains:
» Objects drawn as rectangles.

» Links between objects shown as lines connecting
the linked objects.

» Messages shown as text and an arrow that points
from the client to the supplier.

-5"“'» o8
UCSC

Collaboration Diagrams /Communication
Diagrams cont..

UML Notation for objects, links and
Messages in a collaboration diagram.

:LecturerCourseManager

1:Add Lecturer
3:Delete Lecturer

Math 101-Section 1:CourseOftfering

)

%

%: 29
UCSC

Collaboration Diagrams /Communication
Diagrams cont..

* Why do you need two different
diagrams?

Sequence diagrams

Show a scenario in a time based order
— what happens first and what happens
next.

Customers can easily read and
understand sequence diagrams.

Useful in early analysis phases.

UCSC

Collaboration Diagrams /Communication
Diagrams cont..

Collaboration Diagrams/Communication
Diagrams:

Tend to provide the big picture for a
scenario.

Organized around the object links to one
another.

Used more in the design phase of
development

UCSC

31

Collaboration Diagram Example

1: Enterbomrower id
3: proce ss
7: Entercopy id
11: confirm borrowing

2: checkBorrowerExist()
4: checkOverdue()
. 6: checkOverlimit()
bomowing 12:informBorrower()

eI

a borrower :
borrower
:librarian
5: getOverdueDetails
13:informBomrowed Copy () g)
/
Z—
_— s: checkCopyExist()
_— 10:checkBorrowable()
a borrowed copy : // a book:
borrowedCopy I/ book
// //’//
/ _—
/ ////
// ///
/ = —
/ — P —
/ ////
/ ~_9:getBookDetails()

_

Message Numbering in a Collaboration
Diagram

» Sequence diagram is read from
top to bottom.

« So Message numbering is not
necessary.

» A Collaboration diagram, however
losses its sequencing information,
If you do not have message
numbering.

» Message numbering can be turn
on/off in Rational Rose.

33

Types of message in UML 2.*

e

Synchronous The sender waits for the receiver to return from
message executing the message

T T e e e e e S e e s L S S s Tt o Pttt ot g R st i e e e U e e SR S DR

Asynchronous The sender sends the message and continues execut-

aMessage(aParameter)

aMessage(aParameter) i : ; .
: o message ing - it does not wait for a return from the receiver
CLes Message return The receiver of an earher message returns focus of

‘control to the sender of that message

e e st i i o o = A S S et S S e e e e

Object creation The sender creates an instance of the classifier
specified by the receiver

«create» aMessage() . A

udsstimys ,‘ Object The sender destroys the receiver
| ﬁ>< destruction Itits lifeline has a tail, this is terminated with an X
e : > Found message The sender of the message is OUtSIdE the scope of the
interaction

Use this when you want to show a message receipt,
but don’t want to show where it came from

S ERR e e e e S SRR G G e A W et R e R e s e L G S S e S IR S i i L

}. Lost message The message never reaches its destination

May be used to indicate error conditions in which
messages are lost

n s RN R S B I P

Ea. Seauence Diaaram: Add Details of a new Course

sd AddCourse)

SYNChronous 1 liteline
message
§ : i
: :Reg:strat:onManager
‘Registrar \
] 1
N v addCourse("UML") object creation message
The Registrar selects —>F
"add course".
N «Create»
The system creates - uml:Course
the new Course. %
1
\ < T\‘R : \
i i
(g + achivation : 1 Sk
notes can form ; . Objectis
8 "script’ ! message : ' Created at
w5 g I . '
describing the | return ! + this point
i 1 I
flow - -

... -

Framing in Sequence Diagrams

UML 2.* feature

One can frame a sequence diagram by
surrounding it with a border and adding a
compartment in the upper left corner.

The compartment contains information that
identifies the diagram.

These interaction fragments can be combined.

Gives you a quick and easy way to reuse part of
one sequence diagram in another.

Ref.
http://www.youtube.com/watch?v=4WDbte6¢cPa8

SCS 2003- 36

UCSC

Interaction
Fragment

* Interaction Fragment
— |s a piece of an interaction
— Acts like an interaction itself

« Combined Fragment
— Is a subtype of interaction fragment

— defines an expression of interaction
fragments

— defined by an interaction operator and
corresponding interaction operands

37

Interaction Operators

* A combined fragment defines an expression of
interaction fragments. The following operators
are commonly used in an combined fragment
expression:

— Alt

— Opt
— Par
— Loop

Ref:

."n"a

& http://www.sparxsystems.com/enterprise_architect_user_guide/18yst

USE andard_uml_models/interactionoperators.html

There is a single operand that executes if the condition is true

opt option
(like if ... then)
alt alternatives The operand whose condition is true is executed. The keyword else
may be used in place of a Boolean expression (like select ... case)
loop loop This has a special syntax:
loop min, max [condition]
loop min times, then while condition is true, loop (max — min) times
break break If the guard condition is true, the operand is executed, not the rest of
the enclosing interaction
ref reference The combined fragment refers to another interaction
par parallel All operands execute in parallel
critical critical The operand executes atomically without interruption
seq weak All operands execute in parallel subject to the following constraint:
sequencing events arriving on the same lifeline from different operands occur in
the same sequence as the operands occur
This gives rise to a weak form of sequencing — hence the name
strict strict The operands execute in strict sequence
sequencing
neg negative The operand shows invalid interactions

Use this when you want to show interactions that must not happen

ignore

ignore

Lists messages that are intentionally omitted from the interaction -
the names of the ignored messages are placed in braces in a comma-
delimited list after the operator name, e.g., {m1, m2, m3}

For example, an interaction might represent a test case in which you
choose to ignore some of the messages

consider

consider

Lists messages that are intentionally included in the interaction - the
names of the messages are placed in braces in a comma-delimited list
after the operator name

For example, an interaction might represent a test case in which you
choose to include a subset of the set of possible messages

assert

assertion

The operand is the only valid behavior at that point in the inter-
action - any other behavior would be an error

Use this as a way of indicating that some behavior must occut at a
certain point in the interaction

Alt and Else Operators

* The interaction operator alt designates that the
combined fragment represents a choice of
behavior.

— At most one of the operands will be chosen. The
chosen operand must have an explicit or implicit
guard expression that evaluates to true at this
point in the interaction. An implicit true guard is
implied if the operand has no guard.

— The set of traces that defines a choice is the union
of the (guarded) traces of the operands.

41

Alt and Else
Operators

* An operand guarded by else
designates a guard that is the
negation of the disjunction of all
other guards in the enclosing
combined fragment.

— If none of the operands has a guard
that evaluates to true, none of the
operands are executed and the

remainder of the enclosing interaction
fragment is executed

42

D

[condition]

messagel (parameters)

messagediparameters)

-

interaction occurs
if condition? is met

messagediparameters)

-

ctherwise, this interaction
occurs if condition? is met

i

ctherwise, this interaction nccurgj

43

Example of a Combined Fragment

sd example J
ob1:C1 0D3:C3
, InteractionOperator . _
| CombinedFragment
opti | _ . Alternative)
= InteractionConstraint (

alt [x:::{}] ‘,_frqr//

ob4-C4
i I
I I
: I
. I
. i
| |
crests I :
i =] oboc2 |
I
foo(foo_par=x) I ! !
1 -~
I doit(z) I
I
| doit(_)
| < .
T |
= foo(_) i >'(I
i I
— — — [
[else] bar(x) | oo R |
itz I
I
x=bar(_)15 ‘ \ ‘ \
s :{ doit(_) \ i
: 1
I
!

_ Vo
InteractionOperand .99;:13!‘31*:}44

Customer Cashier Card Procassor Cash Register
| | I |
1 1 I I
loop I I I |
— _ | I | |
2=y sh=0=] I 1.0 unloadltemiitemCost) I I I
1 | I |
I |
I |
1.1 talylamicost) I |
I |
I |
L I |
I |
1.2 requesitPaymeant I |
-E: ————————————— | |
| | I |
i ; i
It 1.3 payCash

E 4 - : :
[cash] I I
1.4 depositPeaymeant |

I

1.5 retnevalChangs

I

My |
1.6 retumChangsa I |
e e L e | I
e I J
[credit card] : : :
1.7 payCradit | I |
- | |
I |
1.8 I |
processiCerd I
I
1.9 |
= " processStatus 0 :
I |
1.10 giveReceipt | '
Oy — I |
I |
T T ! '
| I

I I
FPayrent was approved/adequate

IIIII & - - - s = = = - R T [A ———
* * h- .'. .h. w .'. L]
1 [¥
[" "
[[[
" " [
] [] ¥
L " "
" [[
" "]
] [']
" ' ¥
" L] |]
] i [
" . |]
] ' ']
] ' ']
" ' "
" ' .
] ' "
" ' .
] [] []
' "
........... . A0 N (S [N -popey - S——
_*] L]
L] L]
L] L]
" |]
[Te} . .
= [[]
m] |]
= . .
m "]
m 1 .
= ' .
mp_....d_ " '
3 W i
=]
m L] .
: \ 4 -
u”. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
L
=
2

20132

* PLAYLIST

Opt and Break Operators

« Option: The interaction operator opt designates a
choice of behavior where either the (sole) operand
happens or nothing happens.

» Break: The interaction operator break represents a
breaking scenario: The operand is a scenario that is
performed instead of the remainder of the enclosing
Interaction fragment.

— A break operator with a guard is chosen when the
guard is true

— When the guard of the break operand is false, the
break operand is ignored and the rest of the
enclosing interaction fragment is chosen. .

47

Opt Operator

sender recejver] [eceiverd
I
|

E'F't) message] (parameters)
[condtion]

If concltion is met, T

messagel(parameters) both messages are sent

48

UCSI

49

