
Object Oriented Design and
Modeling using UML

Design of an Object Oriented System

Introduction

• Object Oriented Design (OOD)

– An approach used to specify the software – An approach used to specify the software
solution in terms of collaborating objects,
their attributes, and their methods.

Different types of
Object classes

• Entity classes

– An object oriented class that contains business
related information and implements the analysis related information and implements the analysis
classes.

– Correspond to items in real life (e. g. MEMBER
/ ORDER) and contain information known as
attributes that describes the different instance
of the entity.

• Interface classes (Boundary Classes)

– An object class that provides the means

Different types of
Object classes

– An object class that provides the means
by which an actor can interface with the
system.

– e.g. a window, dialog box, screen

– Also known as boundary class

• Interface classes (Boundary Classes)

– The responsibility of an interface class is

Different types of
Object classes

twofold,
• Translates the user’s input into information that the

system can understand and use to process the
business event

• Takes data pertaining to a business event and
translates the data for appropriate presentation to
the user.

• Control classes

– An object class that contains application logic

Different types of
Object classes

– An object class that contains application logic

– Implement the business logic or business rules
of the system

– Process messages from an interface class and
respond to them by sending and receiving
messages from the entity class.

•Persistence Classes

–An object class that provides functionality to read

Different types of
Object classes

and write attributes in a database. The
functionality could be built into the entity classes.

–But if that functionality is put into a separate
persistent (data access) classes, the entity
classes are kept implementation independent.

• System Classes

– An object class that handles operating system

Different types of
Object classes

– An object class that handles operating system
specific functionality

– If the system is ported to another operating
system only the system classes and perhaps
the interface classes have to be changed.

• In object-oriented analysis, identify the most
common object relationships.

Design Relationships

• In object-oriented design, model more advanced
relationships in order to accurately specify the
software components.

• Dependency Relationships

– Used to model the association between two classes in
two instances:

Design Relationships

two instances:
• To indicate that when a change occurs in one class, it may affect

the other classes

• To indicate the association between a persistence class and an
interface class

• e. g.

Place new order handler
<<UI>>

Order display window

• Navigability

– Illustrated with an arrow head pointing only to
the direction a message can be sent.

Design Relationships

the direction a message can be sent.

– By default associations between classes are
bi-directional, meaning that classes of one
kind can navigate to classes of the other class

– However, there may be times when you want
to limit the message sending to only one
direction.

Attribute and Method
visibility

• Visibility:

– The level of access an external object
has to an attribute or methodhas to an attribute or method

– UML provides three levels of visibility

• Public (+)

• Protected (#)

• Private (-)

• Public attributes can be accessed and public methods can
be invoked by any other method in any other class.

• Protected attributes can be accessed and protected methods

Attribute and Method
visibility

• Protected attributes can be accessed and protected methods
can be invoked by any method in the class in which the
attribute or method is defined or in subclasses of that class.

• Private attributes can be accessed and private methods can
be invoked only by any method in the class in which the
attribute or method is defined.

• If a method needs to be invoked in response to a
message sent by another class, the method
should be declared public.

Attribute and Method
visibility

should be declared public.

• In most cases all attributes should be declared
private to enforce encapsulation.

e.g:

Address

-street : String
-city : String

+getStreet() : String
+getCity() : String

Object responsibilities

• The obligation that an object has to provide
a service when requested

• Thus, collaborate with other objects to • Thus, collaborate with other objects to
satisfy the request if required.

• Closely related to the concept of being able
to sent and/or respond to messages.

The process of Object-
Oriented design

• During OOA

– Define use cases and identify objects
based on ideal conditions

• During OOD

– Refine the use cases and objects to
reflect the actual environment of the
proposed solution.

• OOD includes the following activities

– Refining the use-case model to reflect the
implementation environment

The process of Object-
Oriented design

implementation environment

– Modeling class interactions, behaviors, and
states that support the use-case scenario

– Updating the class diagram to reflect the
implementation environment

Refining the use-case model

• Use-cases will be refined to include
details of

– how the actor will actually interface with – how the actor will actually interface with
the system

– how the system will respond to that
reaction to process the business event

• The manner in which the user access the
system should be described in detail.

– e.g. Via a menu, window, button, barcode

Refining the use-case model

– e.g. Via a menu, window, button, barcode
reader, printer

• The contents of windows, queries, and
reports should be specified within the use
case

• Steps to adapt each use case to the
implementation environment

– Step1: Transforming the “Analysis” use cases

Refining the use-case model

– Step1: Transforming the “Analysis” use cases
to “Design” use cases

– Step2: Updating the use-case model diagram
and other documentation to reflect any new use
cases

For more information refer ref1 pg 651-655

Modeling class interactions,
behaviors, and states that support

the use-case scenario

• Step1: Identify and classify use-case design
classesclasses

• Step2: Identify class attributes

• Step3: Identify class behaviors and
responsibilities

For more details refer ref1 pg 656-665

Updating the object model to
reflect the implementation

environment

• Once the objects and other interactions have
been design, class diagram can be refined to been design, class diagram can be refined to
represent software classes in the application

• Design class diagram : a diagram that depicts
classes that correspond to software components
that are used to build the software application.

• A design class diagram includes the following

– Classes

Updating the object model to
reflect the implementation

environment

– Classes

– Associations , gen/spec and aggregation relationships

– Attributes and attribute type information

– Methods and parameters

– Navigability

– Dependencies

For more details refer ref1 pg 665-666

Object reusability and Design
patterns

• Two very important goals of OOD

– Low coupling

– High Cohesion– High Cohesion

• Coupling : the degree to which one class is
connected to or relies upon other classes

• Cohesion : the degree to which the attributes and
behaviors of a single class are related to each other

• Reasons behind high cohesion and low
coupling

Object reusability and Design
patterns

– Each class focuses on one thing

– Classes are independent

– object reusability: object classes created for
one information system should be able to
reused in other information systems.

Design Patterns

• Object oriented developers look for the
same reuse opportunities through the use
of design patternsof design patterns

• Design patterns: a common solution to a
given problem in a given context, which
supports reuse of proven approaches and
techniques.

Object Reusability and Design
Patterns

Design Patterns
Definition:

• A pattern is a recurring solution to a standard
problem, in a context.(Alexander et al., 1997)problem, in a context.(Alexander et al., 1997)

• A pattern describes a problem which occurs
over and over again in our environment, and
then

• Describes the core of the solution to that
problem, in such a way that
– you can use this solution a million times over,
– without ever doing it the same way twice.”

27

Patterns in engineering

• How do other engineers find and use patterns?

– Mature engineering disciplines have handbooks
describing successful solutions to known problems

– Automobile designers don't design cars from scratch
using the laws of physics

Instead, they reuse standard designs with successful Instead, they reuse standard designs with successful
track records, learning from experience

– Why should software engineers make use of
patterns?

• Developing software from scratch is also expensive

– Patterns support reuse of software architecture and
design

28

The “gang of four”
(GoF)

• Erich Gamma, Richard Helm, Ralph Johnson
& John Vlissides (Addison-Wesley, 1995)

– Design Patterns book catalogs 23 different
patterns as solutions to different classes of
problems, in C++ & Smalltalkproblems, in C++ & Smalltalk

– The problems and solutions are broadly
applicable, used by many people over many
years

– Why is it useful to learn about this pattern?

• Patterns suggest opportunities for reuse in
analysis, design and programming

29

GoF says, In general, a pattern has
four essential elements:

1. Pattern name

2. Problem: describes when to apply
the pattern

3. Solution :describes the elements 3. Solution :describes the elements
that make up the design, their
relationships, responsibilities, and
collaborations

4. Consequences : are the results and
trade-offs of applying the pattern.

30

Object Reusability and Design Patterns
Ref: SAD Methods, Whitten, Bentley 7th Ed, 2007

• Consider Place New Order sequence
diagram in an Order Processing System

Figure 1
31

D1

Slide 31

D1 DELL, 4/9/2014

Object Reusability and Design Patterns

• Alternative way - Place New Order
sequence diagram

Figure 2
32

Object Reusability and Design Patterns

Figure 2

Places more
responsibility

on Member
Order Entity

Class

33

Object Reusability and Design Patterns

• Consider Place New Order sequence
diagram in an Order Processing System

Figure 1

Place New
Order

Controller
does all the

work.

34

D1

Slide 34

D1 DELL, 4/9/2014

Coupling and Cohesion

• Two overall goals of OOD are
– LOW Coupling

– HIGH Cohesion

• Coupling : The degree to which one class is • Coupling : The degree to which one class is
connected to or relies upon other classes.

• Cohesion : The degree to which all of the
attributes and behavious of a single class are
related to each other.

35

Coupling and Cohesion

cont..

• The reason behind the goals of low
coupling and high cohesion is Object

Reusability.
Object

REUSED

IS IS

Object
Classes

36

Object Reuse

• Several studies have documented the success of object
Reuse. [1]

[1] – “ White paper on Object Technology : A Key software

technology for 90s “- Computer World , May 1992technology for 90s “- Computer World , May 1992

Electronic Data Systems initiated two projects to develop the
same system using two different languages.

Result: Comparison of OO and 3GL languages

37

Cohesion and Coupling in Place
Order example.

Figure 2

Higher Coupling
than Figure 1 –

Member order is
related to more

classes

Lower cohesion : Member
order is responsible for

getting the quantity in stock
out of product.

38

Design Patterns

• “Don’t reinvent the Wheel” : it means do
not write software to solve a problem that
someone else has already written to solve
correctly and efficiently.

• Many companies take this approach for • Many companies take this approach for
developing new applications.

• This will save time and money.

• OO developers look for the same reuse
opportunities through the use of Design
Patterns.

39

Design Patterns

• The goal of a pattern is not to discover or
invent a new solution to a problem.

• But to formally structure an existing solution to
a common problem.

– So that others may use it and take advantage of it.– So that others may use it and take advantage of it.

• They are not :

– Data structures that can be encoded in classes
and reused as is (i.e., linked lists, hash tables)

– Complex domain-specific designs
(for an entire application or subsystem)

40

Three Types of
Patterns (GoF)

• Creational patterns:
– Deal with initializing and configuring classes

and objects

• Structural patterns:
– Deal with decoupling interface and – Deal with decoupling interface and

implementation of classes and objects

– Composition of classes or objects

• Behavioral patterns:
– Deal with dynamic interactions among

societies of classes and objects

– How they distribute responsibility

Three Types of Patterns (GoF)

42

Singleton pattern
(creational)

• Ensure that a class has only one instance and provide a
global point of access to it

class Singleton

{ public: { public:

static Singleton* getInstance();

protected:

Singleton();

Singleton(const Singleton&);

Singleton& operator= (const Singleton&);

private: static Singleton* instance;

};

Singleton *p2 = p1->getInstance();

Ref:
https://www.youtube.com/watch?v=nh1oDnzn5yM&list=PLq
lI1RpjIS59ziAx7YBqQ0rtyAcpgdsjm&index=40

Structural patterns

• Describe ways to assemble objects to realize
new functionality
– Added flexibility inherent in object composition

due to ability to change composition at run-time
– not possible with static class composition

• Example: Proxy• Example: Proxy
– Proxy: acts as convenient surrogate or

placeholder for another object.
• Remote Proxy: local representative for object

in a different address space
• Virtual Proxy: represent large object that

should be loaded on demand
• Protected Proxy: protect access to the original

object

Adapter Pattern- Another Example
• SoundStage MembervServices system has to

calculate sales tax on orders.

• Keeping up on all the varying laws in country or
province is a difficult task.

• Therefore SoundStage will want to buy prewritten
tax calculation classes and plug them into the tax calculation classes and plug them into the
member service system.

• They found more than one vendor who could
supply them with the classes.

• Each vendors classes provides different set of
methods to call.

• Design the system : if they change vendors, very
few modifications need to be done. 45

Adapter Pattern- Example cont..

• Given example : SoundStage Member
Services system

Adapter Pattern describe ways to assemble
objects to realize new functionality

46

Implementation of Adapter Pattern
for SoundStage

47

Implementation of Adapter Pattern
for SoundStage

48

Provides and unchanging
method (calcSalesTax) for

the rest of the system to call

Implementation of Adapter Pattern
for SoundStage

To integrate in the
purchased class(
Brand X Sales Tax
Calculator) We

49

Calculator) We
write a new class
(Brand X Adapter)
that inherits from
Sales Tax Adapter
class

Implementation of Adapter Pattern
for SoundStage

It translate

50

It translate
(adapts) the call
from the system
into a call that
purchased class
can accept.

Implementation of Adapter Pattern
for SoundStage

If we ever
change the
vendors, then
we have only to

51

we have only to
write a new
adapter
subtype;
everything else
stays the same.

Behavioral patterns:

• Deal with dynamic interactions
among societies of classes and
objects

• Provide guidance on the way in • Provide guidance on the way in
which classes interact to
distribute responsibility.

52

The Strategy
Pattern

53

Example
ModesModes ofof transportationtransportation toto anan airportairport isis anan exampleexample

ofof aa StrategyStrategy..
SeveralSeveral optionsoptions exist,exist, suchsuch asas drivingdriving one'sone's ownown car,car,

takingtaking aa taxi,taxi, anan airportairport shuttle,shuttle, aa citycity bus,bus, oror aa
limousinelimousine serviceservice..

AnyAny ofof thesethese modesmodes ofof transportationtransportation willwill getget aa
travelertraveler toto thethe airport,airport, andand theythey cancan bebe usedused
interchangeablyinterchangeably.. TheThe travelertraveler mustmust choosechoose thetheinterchangeablyinterchangeably.. TheThe travelertraveler mustmust choosechoose thethe
StrategyStrategy basedbased onon tradeoffstradeoffs betweenbetween cost,cost,
convenience,convenience, andand timetime..

Another Example

• Say a company X is running
Promotions

• When a member places an order may
use any number of promotions

– Based on total $ amount of the order – Based on total $ amount of the order

– Based on number units they purchased

– Based on the kind of the product ordered.

– Some provide a % discount

– Some $ amount discount etc.
55

Strategy Pattern : Promotion Example
cont..

• Programming code to apply to each
kind of promotion is significant.

• More importantly it is constantly
changing – (new promotions from
marketing people)

56

Strategy Pattern : Promotion
Example cont..

• How can the system incorporate
existing and new promotions without
constantly rewriting code/classes?

57

Promotion Example cont..

58

Each class has a standard interface
method called calcDiscount to return
the $ amount.

Strategy Pattern : Promotion
Example cont..

59

Internal code to calculate each
promotion will be entirely different for
each promotion class.

Strategy Pattern : Promotion
Example cont..

60

CalcDiscount method is designed to be
passed to the entire member order
instance as a parameter.

